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Abstract

Biomedical semantic question answering deals with answering questions about biomedical-

related concepts. We propose a system that tackles the problem of biomedical semantic

question answering in the BioASQ challenge, where the task is to answer biomedical ques-

tions given a small set of relevant snippets in biomedical articles. Our approach relies upon

transfer learning from a large general question-answering dataset, the Stanford Question

Answering Dataset. A naive transfer learning technique of pre-training a deep neural net-

work on the Stanford Question Answering Dataset and finetuning on the BioASQ dataset

leads to a significant plummet in performance, from around 80% in the general question-

answering domain to 30% in the biomedical domain. Our hypothesis for why this drop occurs

is twofold. First, we believe the biomedical domain is inherently harder and requires more

domain knowledge to correctly answer questions. Second, the BioASQ dataset is limited in

size, and so finetuning does not do enough to allow the system to adapt to the new domain.

In this thesis, we explore a solution to the latter problem. To combat small amounts of data

in the biomedical domain, we derive an approach based on two-stage synthesis networks to

perform generative data augmentation and generate synthetic question-answer pairs in the

biomedical domain. We evaluate the quality of generated question and answer pairs both

qualitatively through human analysis as well as quantitatively through their e↵ect on transfer

from the Stanford Question Answering Dataset to the BioASQ dataset. We explore several

ways to improve the quality of synthetic question-answer pairs in the biomedical domain.

While these improvements help increase validation accuracy on the BioASQ dataset, we find

that ultimately, these approaches yield negative transfer.
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Chapter 1

Introduction

As information and knowledge has been made more available on the Internet over the last

few decades, many techniques in the field of biomedicine have been developed to leverage

these massive amounts of data. With large corpora and knowledge databases such as PubMed

Central and MEDLINE, biomedical workers are tasked with the tough task of combing

through and synthesizing hundreds of thousands of domain-specific articles when looking

for answers to specific questions. One approach to facilitating this search is developing

better search engines and query handling in large databases such as MEDLINE, but leaving

it up to biomedical experts to extract relevant snippets and answer questions from a set of

filtered biomedical articles. A more compelling approach is to develop a biomedical question-

answering system that uses the power of machine learning and data-driven approaches to

retrieve correct answers to biomedical questions. The BioASQ challenge was developed to

allow researchers to tackle the problem of biomedical question answering [35]. In this thesis,

we develop a technique to address the problem of biomedical question answering specifically

for the BioASQ challenge.

The BioASQ dataset consists of around 650 question-answer pairs and a set of relevant

snippets from biomedical articles. For example, the following triplet is an example of a

question, answer, and snippet from the BioASQ dataset.

1
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Example Snippet : GM1 and GM2 gangliosidosis are associated with deficiency of

�-galactosidase and �-hexosaminidase respectively.

Question: Which enzyme deficiency can cause GM1 gangliosidoses?

Answer : �-galactosidase.

It is non-trivial to develop a biomedical question-answering system to answer questions

of this form, since this system must identify relevant snippets to the question from the set of

given snippets and parse these snippets to obtain the correct answer. In the above question,

giving the correct answer to the given question requires reasoning about the question with

respect to the snippet. A successful approach would be able to identify the words ’cause’

and ’associated with’ as related and then examine relationships between the objects in the

snippet: GM1 and GM2 gangliosidosis and �-galactosidase and �-hexosaminidase. The word

’respectively’ gives us the correct relationship between these objects. Additionally, to answer

this question, a system might have to reason about the concept ontologies of the biomedical

phrases �-galactosidase and �-hexosaminidase to determine whether they are enzymes.

With data of the form in the BioASQ dataset, traditional machine learning approaches

can be employed to learn a mapping from questions to answers using the BioASQ dataset

for training. Question-answering as a field has been an area of interest in Natural Language

Processing for many years, and recent approaches in the field have seen tremendous successes

with the use of deep learning techniques [31]. However, these deep learning approaches

typically require large amounts of data, so training these models on the BioASQ dataset is

infeasible. Thus, Wiese et al. propose leveraging other similar question-answering datasets

that have large amounts of data using methods from transfer learning. Transfer learning

aims to leverage knowledge gained from one source task in another related, but separate

target task. In cases where labeled data for the target task is rare, transfer learning has
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clear value. For the BioASQ dataset, Wiese et al. propose performing transfer learning from

a popular general question-answering dataset, the Stanford Question Answering Dataset

(SQuAD) [39, 28]. SQuAD contains over a hundred thousand labeled question-answer pairs,

so training a deep learning model on this data is feasible. The following triplet is an example

of a snippet, question, and answer from the SQuAD dataset.

Example Snippet : Super Bowl 50 was an American football game to determine

the champion of the National Football League (NFL) for the 2015 season. The

American Football Conference (AFC) champion Denver Broncos defeated the

National Football Conference (NFC) champion Carolina Panthers 24?10 to earn

their third Super Bowl title.

Question: Which NFL team represented the AFC at Super Bowl 50?

Answer : Denver Broncos.

Even though the two datasets, SQuAD and BioASQ, are significantly di↵erent with the

domain of snippets, the motivation of transfer learning is that, on SQuAD, a model can

still learn syntactic structures of language and meta-reasoning about relationships between

words that might help this model answer questions in the biomedical domain. Most simple

approaches to deep transfer learning concern pre-training [24]. In this method, when training

a neural network for a target task, weights of a neural network are initialized to the weights

of a network trained on a related source task. This has shown remarkable results in the

computer vision domain, where neural networks are initialized to a convolutional neural

network trained on the large ImageNet dataset of object images ([18], [32]). After training

on ImageNet, these neural networks are then fine-tuned on the target dataset of choice with

the hope that the initialization of the network to a model trained on ImageNet will help

improve classification accuracy in the target domain. Weise et al. find that a deep learning
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approach of pre-training a model on the SQuAD dataset improves accuracy on the BioASQ

dataset by a significant margin [39].

Despite the success of the transfer learning approach, transfer learning comes with its

own set of challenges, especially when applied to the BioASQ dataset. Pre-training a deep

neural network on SQuAD and finetuning on the BioASQ dataset leads to a significant

plummet in performance, from around 80% in the general question-answering domain to

30% in the biomedical domain. We hypothesize that this gap can occur because of two main

reasons. First, the BioASQ dataset contains inherently tougher questions to answer because

of the biomedical domain knowledge required to answer questions. This is illustrated in the

example question from the BioASQ dataset shown above, where a system might be required

to know that �-galactosidase is an enzyme. Secondly, we believe that since the BioASQ

dataset has approximately only 650 question and answer pairs to train on, a model pre-

trained on SQuAD overfits to the types of questions and answers from the SQuAD dataset

and does not have enough data in the biomedical domain to finetune on and adapt to the

style of questions in the BioASQ dataset. In this thesis, we explore a solution to the latter

problem through data augmentation in the biomedical domain. Data augmentation is an

approach that adds new data to an existing dataset to increase the number of training

examples in the dataset or increase the diversity of examples in the training set. Typically,

data augmentation consists of adding generated or synthetic data to a dataset, and it is

a well-known approach to combat overfitting [26]. In computer vision tasks, simple data

augmentation schemes apply random rotations, flips, and transformations to images in the

training dataset. This generates many di↵erent variations of the same image in the dataset,

allowing a model to see a larger distribution of images during training. In the context of

transfer learning, data augmentation can also aid transfer learning from a source task to

a target task. Because of a lack of data in the target domain, a model can overfit to the

source task and perform poorly on the target task. To address this, data augmentation can

be employed in the target dataset so a richer data distribution is available to finetune on.

Our goal is to perform generative data augmentation for biomedical question answering,



CHAPTER 1. INTRODUCTION 5

specifically in the BioASQ dataset, by generating synthetic question-answer pairs. Our hy-

pothesis is that if we can generate high-quality synthetic question-answer pairs and augment

the BioASQ dataset with these pairs, a model pre-trained on SQuAD will perform better on

the BioASQ dataset during finetuning. To that end, our contribution is a pipeline for ques-

tion and answer generation in the biomedical domain, adapted from an approach proposed

by Golub et al. (coined the two-stage synthesis network) [9]. This thesis is focused on im-

proving the quality of synthetic question-answer pairs on the BioASQ dataset with the end

goal of better transfer. We find that using two-stage synthesis networks on the biomedical

domain yields noisy and poor generated questions and answers, which end up hurting the

performance of a model during finetuning. We explore methods for improving the quality of

these synthetic question and answers, but find that even with these improvements, perfor-

mance on the BioASQ dataset falls during finetuning. We discuss reasons for why this drop

might be occurring and evaluate possible solutions.



Chapter 2

Background

In this chapter, we describe the background for statistical natural language processing

and deep learning necessary for our method.

2.1 Artificial Neural Networks

2.1.1 Feedforward Neural Networks

Neural networks are powerful function approximators. At the heart of an artificial neural

network is a basic computation unit, a neuron. Given an input vector x, a neuron computes

the following function:

f(x) = a(wT

x+ b) (2.1)

where x, w 2 Rn, b 2 R, and a is a function a : R! R. A neuron can be thought of as first

applying a linear transformation on x through some set of weights w and a bias b [4]. Then,

a function a (canonically known as the activation function) is applied to the result of the

linear transformation. Typically, the activation function is some nonlinear function, such as

the sigmoid function or tanh function.

6
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Feedforward neural networks consist of layers of neurons stacked on top of each, as shown

in Figure 2.1. A feedforward neural network is shown as a directed acyclic graph, where

neurons are vertices and directed edges represent inputs and outputs of neurons. An input

vector of dimension d into a neuron is represented as d arrows pointing to that neuron. Thus,

generalizing the computation of one neuron in Equation 2.1, the computation at each layer

can be performed through a matrix multiplication, where the input is a matrix, a weight

matrix stores weight vectors for every neuron in the layer, and the bias is a vector. In this way,

when fed an input matrix, a neural network can successively apply matrix multiplications

with the weights of each layer to obtain some output. Since each neuron computes some

non-linear function (based on the activation function non-linearity), the neural network as

a whole can approximate complex non-linear functions. Layers in the neural network where

every neuron in one layer is connected to every neuron in the next layer is denoted as a fully

connected layer.

Figure 2.1: Feedforward neural network with 3 layers (Figure from [27])

Feedforward neural networks may be trained using supervised learning methods to learn

weights and biases in the neural network. In the traditional supervised learning framework,

a training set of n examples [(x1, y1), (x2, y2), . . . , (xn

, y

n

)] is used for the training phase of

learning. Each x

i

is an input to the neural network and the learning task is to find weights

for the neural network such that when x

i

is given as input to the neural network, the network
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will output y
i

. More concretely, the goal of the neural network is to minimize a loss function

that measures how well the network performs on the training set. The network is trained

through gradient descent (typically stochastic gradient descent) and the weights are modified

during each iteration of gradient descent until convergence.

2.1.2 Recurrent Neural Networks

For tasks that involve sequential information such as natural language data, feedforward

neural networks struggle to capture relationships between separate inputs since they assume

that inputs are independent of each other. Recurrent neural networks (RNNs) utilize this

sequential information by storing state, or keepingmemory, of inputs passed into the network.

This memory is also denoted as the hidden state of the RNN. Specifically, at every time step,

a RNN takes in as input not only the current input at timestep but the output of the RNN

at the previous time step t� 1.

Pictorially, this can be represented as a loop in the graph depicting the neural network,

as shown in Figure 2.2a. However, this loop can be unrolled to view a RNN as a directed

acyclic graph, as shown in Figure 2.2b. Unrolling over t timesteps shows the hidden state of

the RNN evolving over time as new inputs are passed in. This can be thought of as memory

since the RNN has the ability to find correlations between information in previous iterations

and the new inputs. For input such as natural language, this can be helpful to encode

syntactic structure of the sentence into the input instead of feeding in a single character or

word at a time.

Limitations

Modeling natural language text data using a recurrent neural network has yielded im-

pressive results for applications such as text generation [33], however there are two main

problems with a standard recurrent neural network model.
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(a) RNN Graph (b) Unrolled RNN

Figure 2.2: Recurrent Neural Network Graphs (Figure from [23])

(a) Tanh Activation Function (b) Function computed by RNN

Figure 2.3: Instability of RNNs (Figure from [12])

First, as a RNN is unrolled over time, inputs are fed through many hidden layers of mul-

tiplicative updates and activation functions. As the number of these hidden layers increases,

inputs can either get prohibitively large or close to 0. These especially become an issue for

computing gradients in deep networks. If the di↵erence between weights across layers is too

large, the computed gradient will be too large and an update to the weights in the neural

network using a gradient descent step will drastically change weights. This can lead to un-

stable models as well as numerical instability issues in implementation. On the other hand,

if gradients are too small, weights will not update and convergence of gradient descent-based

algorithms will slow down rapidly. These two problems are denoted the exploding gradient

problem and the vanishing gradient problem respectively. In an RNN with tanh activation
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functions, this problem is illustrated in Figure 2.3. As the tanh function is iteratively ap-

plied, we see the function computed by the RNN in Figure 2.3b. It is clear from the graph

that the gradient either explodes or vanishes in this figure.The exploding gradient problem

is easily combatted by clipping gradients during every iteration to ensure they do not get

very large. The vanishing gradient problem requires more complex approaches to tackle, as

discussed in the following section.

Second, in practice, RNNs struggle to capture long-term dependencies in inputs [2].

Specifically in language data, this can cause issues in tasks such as text generation where

previous sentence context for generating a new word is crucial. If this context is lost over

time, the model will struggle to predict a relevant word.

2.1.3 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks, proposed by Hochreiter et al. [13], demon-

strate solutions to both of the problems of RNNs mentioned in the previous section. Consider

the RNN in Figure 2.2a. In an LSTM, the RNN A is replaced by a special LSTM cell, de-

signed to handle long-term dependencies. An LSTM cell consists of four main components,

divided into gates that handle inputs. These components produce outputs like a RNN cell,

however they also modify a special state, denoted the cell state, a vector of information

where each element can be thought of as a memory. The cell state is shared across multi-

ple forward passes to the LSTM, and gates modify information in the cell state, enabling

long-term memory retention given proper updates. The four main gates for the LSTM are:

1. Input gate: The input gate is the first step in determining how the cell state is updated

given a new input. The input gate is a one-layer neural network with sigmoid activation

neurons that takes in the current input and previous output of the LSTM from the

preceding timestep. The output intuitively represents the values in the cell state should

be updated, since the sigmoid function outputs values between 0 and 1 (which can be

viewed as probabilities across the values in the cell state).
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2. Cell gate: The cell gate is the second step in determining how the cell state is updated

given a new input. The cell gate is a one-layer neural network with tanh activation

neurons that takes in the current input and previous output of the LSTM from the

preceding timestep. This intuitively represents new values for the cell state, since the

tanh function outputs values between �1 and 1.

3. Forget gate: The forget gate handles which elements in the cell state should be re-

moved or forgotten. The forget gate is a one-layer neural network with sigmoid ac-

tivation neurons that takes in the current input and previous output of the LSTM

from the preceding timestep. This intuitively gives probabilities of retaining cell state

information for every element in the cell state.

4. Output gate: The output gate decides what elements in the cell state should be out-

putted as the output of the LSTM. The output gate is a one-layer neural network with

sigmoid activation neurons that takes in the current input and previous output of the

LSTM. This intuitively represents probabilities for which values of the cell state should

be outputted.

The outputs from these gates are combined in the following ways to update the cell state

as well as generate output for the LSTM cell:

1. Updating cell state: First, the values from the forget gate are used to update the cell

state. A Hadamard product (element-wise product) of the forget gate output and

the cell state allows a way to e↵ectively remove memories for which the forget gate

layer outputted a value close to 0. Afterwards, the updated cell state is added to the

combined values from the input gate and cell gate. Combining the input gate and cell

gate gives a way to determine which values in the cell state should be updated and

what they should be updated to. Specifically, this combination is performed through

a Hadamard product between the output of the input gate and cell gate. Since the

output of the input gate can be thought of as a vector of probabilities and the output



CHAPTER 2. BACKGROUND 12

of the cell gate can be thought of as new values for the cell state, multiplying these

probabilities with the cell gate gives a new cell state.

2. Generating output : The value of the output gate can be interpreted as probabilities

over the cell states for which elements should be updated. Performing a Hadamard

product with the current cell state gives the output of the LSTM. To squash the values

of the output between �1 and 1, the cell state is fed through an tanh function before

performing a Hadamard product with the output of the output gate.

Mathematically, given current input x
t

at timestep t, previous output h
t�1, and previous

cell state C

t�1, the above gates can be described tersely as the set of following updates

f

t

= �(W T

f

[h
t�1, xt

] + b

f

) (Forget gate)

i

t

= �(W T

i

[h
t�1, xt

] + b

i

) (Input gate)

c

t

= tanh(W T

c

[h
t�1, xt

] + b

c

) (Cell gate)

o

t

= �(W T

o

[h
t�1, xt

] + b

o

) (Output gate)

C

t

= f

t

· C
t�1 + i

t

· c
t

(Updating cell state)

h

t

= o

t

· tanh(C
t

) (Output value)

where � is the sigmoid function, and W and b describe weight and biases for the one-layer

neural networks representing the forget gate, input gate, cell gate, and output gate.

A traditional LSTM acts on a time sequence in one direction, storing results and context

going forward in time. A simple modification of the LSTM yields the bidirectional LSTM,

where a bidirectional LSTM cell contains two separate LSTM cells, acting on a time sequence

in both directions [30]. Practically, this is implemented as running an LSTM in parallel on

the input sequence as well as the reversed input sequence. In a natural language setting,

this is evidently useful as context for a word can arise from words surrounding the word on
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either side. LSTMs have shown impressive results in many areas, from text generation to

speech synthesis to image captioning ([10], [11], [37]).

2.2 Sequence to Sequence Models

The sequence to sequence (seq2seq) model has been a popular approach for mapping

sequences of data to di↵erent sequences of data. We motivate this model in the lens of

neural machine translation [15]. Consider the task of translating a source sentence from

English to French. Antiquated translation approaches explored rule-based systems as well

as data-driven approaches for translating phrases in sentences independently; however, these

approaches usually led to incoherent sentences with no real flow or meaning. Sequence to

sequence models instead use an encoder-decoder model for neural machine translation ([34],

[7]). The goal of these models is to first map an input sentence to a fixed-length vector

representation of the sentence using an encoder. Then, this vector representation is mapped

to a target sentence using a decoder. In the neural machine translation case, the encoder-

decoder model can map a sentence from one language to a vector representation and into

another language. Typically, encoders and decoders are RNNs or LSTMs that are able to

capture dependencies in the sequence data over time and encode this sequential information

in a vector representation of the data.

2.2.1 Attention Mechanisms

The encoder-decoder model yields good results in the neural machine translation, but a

possible problem with this approach is that the encoder must condense all information from

the sentence into a fixed-size vector. As the length of the source sentence grows, the encoder

must lose some information and the performance of the translation model deteriorates [6].

Bahdanau et al. proposed a solution to this model by developing attention mechanisms for

the decoder [1]. Instead of forcing the encoder to encode the entire source sentence in a
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fixed-length vector, in this approach, an encoder only generates a vector output (also called

annotation) for every word in the source sentence. When the decoder is generating a new

word, it searches over all encoder annotations and finds annotations relevant to generating

the current word. From these annotations, the decoder derives a context vector that describes

relevant parts of the source sentence. This is equivalent to the decoder ”paying attention”

to certain portions of the source sentence over others when generating a new word. This

intuitively makes sense, since certain portions of the source sentence provide much more

context than other when translating word by word.

Luong Attention

We describe a specific global attention mechanism proposed by Luong et al. in which the

decoder considers all hidden states of the encoder when deriving a context vector [20]. To

formalize the Luong global attention mechanism, we employ the following notation. Consider

the neural machine translation task from a source sentence E = {x1, x2, . . . xS

}. Denote h

t

as the hidden state for the decoder at any time t. Denote h̄

s

as the hidden state for the

encoder at time step s where 1  s  S. First, the attention mechanism must find the

relevant encoder hidden states given the current decoder hidden state h

t

. To do this, the

attention mechanism computes an alignment score a

t

(s) between h

t

and every source hidden

state h

s

, as shown in Equation 2.2.

a

t

(s) =
exp

�
score(h

t

, h̄

s

)
�

P
1s

0S

exp
�
score(h

t

, h̄

s

0)
� (2.2)

The alignment score is essentially a softmax over individual scores between the target hidden

state and a given source hidden state. This individual score is calculated from a score-based

function, which can one of the following alternatives:
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score(h
t

, h̄

s

) =

8
>>>>><

>>>>>:

h

T

t

h̄

s

dot product

h

T

t

W

a

h̄

s

general

W

a

[h
t

; h̄
s

] concatenation

In the general and concatenation score functions, W
a

parameterizes the weights of a one-layer

feedforward neural network, which would be jointly learned with the weights of the network

for the encoder and decoder.

After obtaining alignment scores between the target hidden state and every source hidden

state, the decoder computes a context vector c
t

as a weighted sum of all the source hidden

states given the alignment scores as weights, as in Equation 2.3.

c

t

=
SX

s=1

a

t

(s)h̄
s

(2.3)

This attention mechanism is typically implemented as an extra layer at every timestep in

the neural network for the decoder. For example, if the decoder was implemented as an

LSTM, the output of the LSTM at each time step would be fed through an attention layer

implementing the above logic, and the generated context layer would be the new output of

the LSTM. This new output would then be fed into the LSTM again in the next time step.
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Transfer Learning for Biomedical

Question-Answering

Our goal is to tackle transfer learning from a general question-answering dataset to a

biomedical question-answering dataset. We describe our approach for this, which is a system

built upon two-stage synthesis networks [9]. Before describing two-stage synthesis networks,

we formally describe the setup for transfer learning. Consider two related, but distinct, tasks:

source task S and a target task T , where data on target task T is limited and data for source

task S is abundant. We adopt the popular method for transfer learning by pre-training a

deep neural network on S and finetuning this model on T , as discussed in Chapter 1.

When data for T is limited, one approach to improving performance is data augmentation

on the target task to get more data for the finetuning phase. In the context of question-

answering, we wish to generate synthetic question-answers on the target task using a pipeline

built upon two-stage synthesis networks [9]. We assume a basic reading comprehension model

for question-answering. In the setup for regular reading comprehension, data is given in the

form of tuples of context paragraphs and questions related to material in that paragraph, and

a model is tasked with identifying the correct answer. Two-stage synthesis networks tackle

the data augmentation problem by assuming an extractive reading comprehension model.

16
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Figure 3.1: Full pipeline for generative data augmentation

Extractive reading comprehension relies upon the added assumption that answers are always

exact phrases from the context paragraph, so the extractive reading comprehension task

reduces down to searching for answer start and answer end indices in the given paragraph.

Two-stage synthesis networks train a question/answer generation model from source task S,

and use these generation models to perform generative data augmentation in target task T .

After the target task data is augmented with the synthetic data, a model is pre-trained on

S and finetuned on T with the goal of improved transfer.

We now describe our pipeline for transfer learning, specifically from the Stanford Ques-

tion Answering Dataset (SQuAD) to the BioASQ dataset ([28], [35]). These datasets are

described in more detail in Chapter 4. To generate synthetic question-answer pairs from a

paragraph, we model the joint distribution of a question q and answer a given a paragraph

p as P (q, a|p) = P (a|p)P (q|a, p), so the two stages of the two-synthesis network can be split

up into an answer generation phase and a question generation phase [9]. The full pipeline

can be seen in Figure 3.1.

3.1 Input Representation

Formally, input to a reading comprehension model is a context paragraph P = {x0, x1, . . . xn

}

and a question Q = {y0, y1, . . . , ym}, where each x

i

and y

i

is obtained by splitting the



CHAPTER 3. TRANSFER LEARNING 18

paragraph and questions by spaces. These words are converted to embeddings using two

pre-trained embeddings:

1. GloVe vectors : These are 300-dimensional vectors trained on the 840B Common Crawl

corpus [25].

2. Biomedical Word2Vec vectors : These are 200-dimensional vectors trained usingWord2Vec

trained on 10 million PubMed abstracts ([14], [22]).

Each word’s embedding is a 500-dimensional vector obtained by concatenating both em-

beddings above. If the word is not present in both of these embeddings, its embedding is

initialized to an all zeros vector. Denote these word embeddings for the context paragraph

and question as P = {p0, p1, . . . , pn} and Q = {q0, q1, . . . , qm} respectively. We will refer to

this notation across the following sections.

We construct the vocabulary for our embedding space by joining a subset of the GloVe

embedding vocabulary with a subset of the biomedical embedding vocabulary. Specifically,

for training an answer and question generation model on SQuAD, Golub et al. use a subset of

the GloVe embedding vocabulary, specifically one of size 110,179 containing words commonly

found in the SQuAD dataset [9]. We augment this vocabulary with a subset of the biomedical

embedding vocabulary obtained by only considering words found in the BioASQ dataset.

[14]. Taking the union of these two subsets gives a vocabulary size of 117,644. Of the 18,103

words in the BioASQ dataset, 9842 of these words exist in both the GloVe and biomedical

vocabulary, 680 of these words exist in neither vocabulary, 23 of these words exist only in

the GloVe vocabulary, and 7558 of these words exist only in the GloVe vocabulary.

3.1.1 Low-Rank Matrix Completion

Because the GloVe and biomedical embedding vectors are in di↵erent spaces, simply

concatenating them can lead to two main problems. To motivate the first problem, we

provide a simple example. Consider the two words infiltrate and infiltrates. Both of
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these words appear in the biomedical vocabulary, but only the word infiltrates appears

in the GloVe vocabulary. In the biomedical embedding space (R200), we observe that, as

expected, the two words infiltrate and infiltrates are highly similar in terms of the

cosine similarity of their respective embeddings. However, in the concatenated space (R500),

because the leading 300 elements of the embedding for the word infiltrate are 0, the cosine

similarity between these two words is reduced significantly. This encourages a large split in

the subspaces defined by the biomedical and GloVe vocabulary, since words that appear only

in the biomedical vocabulary are likely to only be similar to other words that appear only

in the biomedical vocabulary. Cosine similarity relationships between words that appear in

both vocabularies and words that appear in precisely one of the vocabularies are destroyed

with the simple embedding concatenation strategy.

Secondly, as will be discussed in further detail below, the distribution of the train and test

sets for the answer generation and question generation phase lie in two di↵erent subspaces

of the concatenated embedding space. Specifically, during training, words are likely to come

from the GloVe embeddings vocabulary, and during testing, words are likely to arise from

the biomedical embeddings vocabulary. If the subspaces defined by the biomedical and

GloVe vocabulary are severely split, this feature mismatch can result in a poor test-time

performance.

To tackle this problem, we wish to project the embedding space into a common subspace.

The task of projecting into a lower-dimensional subspace could be performed by a traditional

dimensionality reduction method such as Principal Component Analysis (PCA), however the

zeros in the matrix make this problematic, since dot products of di↵erent rows will be biased

by these values [4]. Instead, we treat this projection as a low-rank matrix completion problem.

There are two assumptions in viewing this problem through the lens of low-rank matrix

completion. First, we assume that the ambient space that the concatenated embedding lies

in can be approximated via a lower-dimensional space. This is a reasonable assumption since

we are concatenating two di↵erent spaces, so there is likely a subspace spanning both whose

dimension is less than the sum of the dimensions of the two spaces. Secondly, we assume
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that the 0 entries in the embedding matrix (which exist only for a word that is exclusively

in one of the given vocabularies) can be treated as ’missing’ values for which we wish to

complete values by projecting into a similar space as other row entries. Low-rank matrix

completion typically arises in the context of recommendation systems. For example, in the

classic Netflix prize problem, the task of recommending new movies to users can be viewed as

a matrix completion problem on the matrix containing user ratings for several movies across

many di↵erent users [3]. We now describe a low-rank matrix completion algorithm that we

will employ to project the embedding space into a common lower-dimensional subspace.

Let X 2 Rm⇥n be the concatenated embedding space, where m is the vocabulary size

and n is 500. Denote ⌦ ⇢ {1, . . . ,m} ⇥ {1, . . . , n} as the sets of indices whose values are

0 because the word for that row is only present in one of the vocabularies. The low-rank

matrix completion problem can phrased as the following optimization problem [5].

min : rank(Z)

subject to :
X

(i,j)2⌦

(X
ij

� Z

ij

)2  � (3.1)

Intuitively, Z is the low-rank approximation for X, so we wish to minimize the rank of Z

while maintaining the property that Z is also close to X as possible. The constraint enforces

that the Frobenius norm of X�Z is less than some small value �. The optimization problem

in Equation 3.1 is NP-hard to solve, so instead, Candes et al. propose solving a variant of

the problem:

min : kZk⇤

subject to :
X

(i,j)2⌦

(X
ij

� Z

ij

)2  � (3.2)

In this optimization problem, kZk⇤ is defined to be the nuclear norm of Z, or the sum

of the singular values of Z. Taking the Lagrangian of the above optimization problem, we
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Algorithm 1 Low-Rank Matrix Completion for Embeddings: Soft-Impute

Given: X 2 Rm⇥n embedding matrix, ⌦ ⇢ {1, . . . ,m}⇥ {1, . . . , n}, ⌦0 ⇢ {1, . . . ,m}
k 2 Z rank for low-rank approximation

E  X[⌦0] 2 R|⌦0|⇥n

. Set complement in universe {1, . . . ,m}
E ' SVD

k

(E) = e
U

k

e
D

k

e
V

T

k

. Take first k singular vectors of SVD
Z

old  X

e
V

k

e
V

T

k

. Projection
while True do

X[⌦] Z

old[⌦] . Fill in missing values
X ' SVD

k

(X) = U

k

D

k

V

T

k

. Take first k singular vectors of SVD
proj  U

k

D

k

. Projected space in Rm⇥k

Z

new  U

k

D

k

V

T

k

. Use low-rank SVD to approximate matrix

if

kZnew�Z

oldk2
F

kZoldk2
F

< ✏ then

break

end if

end while

return proj

can convert the constrained optimization of Equation 3.2 to Equation 3.3, where kX �Zk2
F

denotes the Frobenius norm of X�Z, or the L2 norm of the vector of entries for every entry

in the matrix.

min :
1

2
kX � Zk2

F

+ �kZk⇤ (3.3)

For our approach, we consider the algorithm for low-rank matrix completion proposed

by Mazumder et al. [21]. This algorithm is denoted as the Soft-Impute algorithm for

matrix completion. We adapt this algorithm for our use case to perform low-rank matrix

completion - the algorithm is described in Algorithm 1. Denote ⌦0 as the indices of the

rows which contain missing entries. This Expectation-Maximization-style algorithm works

by iteratively computing a low-rank Singular Value Decomposition (SVD) of the embedding

matrix, using this low-rank SVD to impute values into the embedding matrix, and repeating.

The stopping criterion on this algorithm thresholds the ratio of the Frobenius norm between

two successive approximations Znew and Z

old. Recall that the Singular Value Decomposition
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of a matrix X is a matrix factorization of X such that X = UDV

T , where U and V are

unitary matrices, and D is a diagonal matrix. We can interpret elements on the diagonal of

D as the singular values of X. For this algorithm, a low-rank SVD is computed by simply

taking the first k singular vectors of the full SVD of the matrix. We make a key modification

to the algorithm proposed by Mazumder et al., namely the initial Zold. Mazumder et al.

propose using a zero-initialization for Z

old. Instead, since we know information about the

structure about the concatenated embedding space, we utilize the information based on

words that intersect both spaces. Specifically, we compute a low-rank SVD of the submatrix

of the embedding matrix that is fully specified (i.e. the rows for which we have entries in both

the GloVe and biomedical embeddings). Then, we perform an orthogonal projection of every

element in the given embedding matrix into this space. The intuition for this modification

is that we are taking advantage of the information about which rows are fully specified. If

we compute an SVD of the entire embedding matrix, the singular vectors will be very close

to 0 for the rows containing missing entries. Taking an SVD of the fully specified submatrix

and imputing back into the embedding matrix gives an initialization of missing values that

is closer to the space defined by the fully specified submatrix, which is desirable.

3.2 Answer Generation

Given a paragraph, the answer generation phase attempts to identify key salient concepts

in the paragraph as answers. To implement this, we wish to tag each word in the input

paragraph as being part of an answer or not. Specifically, the answer generation model is

an Inside-Outside-Beginning (IOB) tagger, where the model takes in as input a word from

the input paragraph and outputs a tag from the set {IOB START, IOB MID, IOB END,

NONE} [29]. This answer generation model is trained on the source dataset S, so we assume

that for supervised learning training, the source dataset (SQuAD) has ground truth labels for

IOB tags, where answers in the paragraph are of the tagged form {IOB START, IOB MID,

IOB MID, . . . , IOB MID, IOB END}. Since we assume an extractive reading comprehension
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setup, the answer span for every question lies somewhere in the context paragraph.

We employ the same answer generation model as in two-stage synthesis networks [9].

Specifically, given a context paragraph P = {p0, p1, . . . , pn} of n words, we pass this para-

graph through a bidirectional LSTM to obtain forward and backward hidden state outputs

for each p

i

. Concatenating both forward and backward hidden state outputs gives a rep-

resentation h

i

for each p

i

that takes into account context of the words surrounding p

i

in

the paragraph. These hidden states are then passed through two fully connected layers,

where the number of neurons in the second fully connected layer is equal to the number of

output tags, 4. The output is a matrix of dimension n ⇥ 4, denoting probabilities over the

output tags, and the maximum likelihood tag is chosen as the output for every word in the

paragraph. This network is trained using a cross entropy loss function between the output

probabilities of the network and the true tag labels for every paragraph in the training set.

It is important to note that a traditional IOB tagger has a coherency restriction that

IOB MID tags must be preceded by a IOB START tag, so previous word tag outputs must

be taken into account when predicting the tag for a given word. This can be implemented

through running an algorithm such as the Viterbi Algorithm on the sequence of probabilities

outputted by the model across a paragraph to enforce this coherency restraint [8]. For

speed and simplicity purposes, the model independently predicts a tag per word, and we

post-process answer segments, as detailed in the following section.

3.2.1 Answer Extraction and Pruning

A key part of the answer generation module is predicting answer segments from the tags

outputted for each word in a context paragraph. To output better answer segments, we

propose two simple methods of answer extraction and answer pruning : Binary Probability

Pruning and Biomedical Tag Probability Pruning, which we describe in more detail below.
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Binary Probability Pruning

Since the model does not enforce a coherency restraint to ensure segments of the form

IOB START, IOB MID, ..., IOB END, a simple way to identify answer segments would be

to consider contiguous words whose tag outputs are not NONE. This ignores any spatial

information about the IOB START, IOB MID, and IOB END tag. To prune away answers

that are not good, we first assign a value to each word in an answer segment, where this value

is equal to the negative log likelihood outputted by the model that this word is not NONE

(i.e. the sum of the negative log probabilities of IOB START, IOB MID, and IOB END).

Then, the rank of an answer segment is the average negative log likelihood of the words in

the answer segment. This gives us a total ordering on all the identified answer segments,

and we can take the top k answers (where k is a hyperparameter) as answers outputted for

a context paragraph.

Biomedical Tag Probability Pruning

Another technique to extract answers would be to use the tag information outputted by

the model to enforce IOB tag coherence. Specifically, answers would be consecutive tags of

the form IOB START, IOB MID, ..., IOB END. This implicitly assumes that answers are

of length greater than 1, which can be modified by allowing answer segments of only the

IOB START or IOB END tag to be classified as potential answer segments. To tailor this

towards the biomedical domain, we introduce an additional constraint for answer extraction.

To formalize this constraint, let G be the set containing the GloVe vocabulary, let B be the

set containing the biomedical vocabulary. Then, an answer segment A is considered a valid

answer segment if and only if there exists at least one word w 2 A such that w 2 B^w /2 G.

Intuitively, this restriction is to extract more answers that contain biomedical concepts. To

prune away specific answers, we proceed by assigning a value to each word in an answer

segment as in Binary Probability Pruning. This value is equal to the highest negative log

likelihood outputted by the model for this word (i.e. if the word is of tag t, the value is
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the negative log likelihood of t). As in Binary Probability Pruning, the rank of an answer

segment is the average negative log likelihood of the words in the answer segment.

3.3 Question Generation

The question generation stage deals with producing a question given a paragraph and

answer. This is modeled as a encoder-decoder model with attention, similar to a sequence

to sequence model. Specifically, the encoder takes in as input a paragraph, and the decoder

takes in the output of the encoder. The decoder must generate a stream of words that

will be the generated question, and it does so by taking in one word embedding in the

question q

i

and predicting the next token q

i+1. For the first and last tokens in the question,

a special start and end token are used. For supervised learning training, a full question

Q = {q0, q1, q2, . . . , qm} (where q0 = START ) is given to the decoder and the model must

learn to output the correct tokens, which would be {q1, q2, q3, . . . , END}. For testing, only

a paragraph and the special start token is fed into the model, and the model must predict

the next token that follows the start token. The specific model of how it learns this mapping

is described below. The encoder and decoder model specifics are the same for both training

and testing, with the only di↵erence being that for training, a full training set question is

passed in, whereas in testing, only the start token is given as input.

3.3.1 Encoder

The encoder acts on the paragraph embeddings. To model the answer location in the

paragraph, the embedding for each word in the paragraph is concatenated with a 0�1 feature

that indicates whether that word is in the span of the answer for which we are generating

a question. The encoder is modeled as a bidirectional LSTM that acts upon the modified

paragraph embeddings P = {p0, p1, . . . pn}. The output of the encoder is the concatenated

forward and backward hidden states of the bidirectional LSTM for each p

i

2 P . Denote this
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output as E = {e0, e1, . . . en}. The encoder can be thought of as producing context-based

representations of each word in the given paragraph.

3.3.2 Decoder

The decoder implements an LSTM that at each time step, takes in as input the output

of the encoder E and the embedding for a previously generated question token q

i

(recall that

questions are padded with a special start token in the beginning of the question, so a previous

question token always exists). A Luong attention layer with a dot product score function

(refer to Section 2.2.1) is added to the LSTM at each time step, so the network outputs a

hidden representation for a question token, then searches for relevant representations in the

encoder output to produce a modified hidden representation [20]. Thus, the output of the

decoder is a set of hidden representations for every word in the given question. Denote this

output as D = {d0, d1, . . . , dm}. Each d

i

is a hidden representation of dimensionality Rh

where h denotes the size of the hidden representation outputted by the LSTM.

3.3.3 Latent Predictor Network

Given the output of the decoder, the network must map this output to a set of tokens that

represent the generated question. From the pre-trained embeddings used (refer to Section

3.1), we can construct a vocabulary of tokens, which we denote as V . The output tokens

for each word of the generated question come from this vocabulary. Thus, we wish to learn

a function g : Rh ! V , and the generated question becomes Q
g

= {g(d0), g(d1), . . . , g(dm)}.

To learn this function g, Golub et al. describe an architecture motivated by latent predictor

networks [19], which we describe in detail in this section. The goal of the latent predictor

network is to generate a probability distribution over the vocabulary V for every hidden

representation d

i

outputted by the decoder. The assumption of the latent predictor network

is that the conditional probability of any word y in the vocabulary given d

i

and the encoder

output E is dependent upon latent variables called predictors. For the two-stage synthesis
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network, there are two predictors used: the copy predictor, which we denote as p
c

, and the

word generation predictor, which we denote as p
w

. Intuitively, for every generated word, the

assumption made is that this word is either copied from a word in the context paragraph

(described by E) or newly generated from the given vocabulary. Thus, we can marginalize the

conditional distribution of the modeled quantity P (y|E, d

i

) to obtain the marginal likelihood

shown in Equation 3.4.

log [P (y|E, d

i

)] = log [P (y, p
c

|E, d

i

) + P (y, p
w

|E, d

i

)] (3.4)

Furthermore, using Bayes’ theorem, we can factor the joint probability distributions

above as shown in Equation 3.5 and 3.6. This suggests an approach that models the prob-

ability of the predictors given d

i

first, and then given this predictor, find the probability of

generating the word y. Given this probabilistic model, we describe modeling these quantities

separately in the subsequent sections.

P (y, p
c

|E, d

i

) = P (y|p
c

, E, d

i

)P (p
c

|E, d

i

) (3.5)

P (y, p
w

|d
i

) = P (y|p
w

, E, d

i

)P (p
w

|E, d

i

) (3.6)

Predictor Probabilities

To model the quantities P (p
c

|E, d

i

) and P (p
w

|E, d

i

), we use a two-layer feedforward

neural network that takes in d

i

as input and outputs the desired probabilities. This assumes

that the encoder output E, which is a representation of the context paragraph, is independent

of the probability of choosing the predictors. This is a fair assumption since the probabilities

of finding the predictor that a word came from depends only upon that word, so we can

condition the probability of each predictor only on d

i

. The two-layer neural network has the

property that the number of the neurons in the second layer is 2, so the output is a vector

in R2. After performing a log-softmax on the output of this neural network, the output can

be interpreted as a log probability distribution over the two predictors p
c

and p

w

.
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Copy Predictor

Next, we describe the model for the quantity P (y|p
c

, E, d

i

). Denote the output distri-

bution over the vocabulary V as D
c

. This model is based upon pointer networks, which

uses an attention mechanism over the encoder output E to find the desired probability [36].

Specifically, the attention mechanism used is a Luong attention mechanism with a dot prod-

uct score function (refer to Section 2.2.1) [20]. The alignment score between d

i

and every

vector in E gives a probability of how likely d

i

is contextually related to every e

j

2 E. This

gives us a distribution over the encoder output E = {e1, e2, . . . , en}. We can easily convert

this distribution to a distribution over the vocabulary V by considering the corresponding

paragraph tokens P = {x0, x1, . . . xn

}. Note that each x

i

is not an embedding, but rather the

raw tokens (indices into the vocabulary) for each word in the context paragraph. For every

x

j

, the probability of x
j

in D
c

is equal to the alignment score between d

i

and e

j

. Thus, the

output distribution over the vocabulary D
c

has non-zero probability only for those words in

the context paragraph, which is why this distribution intuitively represents the probability

of copying a word from the context paragraph.

Word Generation Predictor

Finally we describe the model for the quantity P (y|p
w

, E, d

i

). We use a one-layer feed-

forward neural network that takes in as input d
i

and outputs the desired probability. The

number of neurons in this layer is the number of words in the vocabulary, or |V |. Thus,

after performing a log-softmax on the output of the neural network, the output can be in-

terpreted as a log probability distribution over the vocabulary, which intuitively represents

the probability of generating a new word from the vocabulary.

Training

During training, given a hidden representation from the decoder, d
i

, the probability of

generating any question token q

i

from the vocabulary is represented as the marginalization
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shown in Equation 3.4, so we sum over the two latent predictors: the copy predictor and

the word generation predictor. Thus, the output of the latent predictor network is a mixed

log probability distribution over the vocabulary representing the sum of distributions of

the probability of each predictor multiplied by the distribution outputted by that specific

predictor. The network is jointly trained with the encoder and decoder using a cross-entropy

loss between the log probability distribution over the vocabulary and ground truth labels of

the correct question tokens.

Testing

At evaluation time, the network is only given one token at a time, starting with the spe-

cial start token. The network then outputs a probability distribution over the vocabulary,

and the token with the maximum likelihood is the new generated token. The network then

takes in this newly generated token and predicts the following token. This process continues

until some maximum question length is hit (chosen to be a hyperparameter) or the special

end token is generated by the model. A key di↵erence between the latent predictor net-

work during training and during testing is that during testing, the outputted probability

distribution is not a mixed probability distribution over both predictors. Instead, the net-

work chooses the predictor with highest probability and outputs the distribution over the

vocabulary outputted by that specific predictor.

3.4 Transfer Learning

After generating synthetic question-answer pairs in the BioASQ dataset for our use case,

we augment the BioASQ dataset with these synthetic question-answer pairs. Then, the

transfer learning task proceeds as canonical pre-training. Specifically, we first pre-train a

FastQA question-answering model on the SQuAD dataset [39, 38]. Then, we finetune this

model on the augmented BioASQ dataset, with the hope that the synthetic question and

answers aid the limited existing examples of question-answer pairs in the BioASQ dataset.
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3.5 Implementation Details

Our answer generation and question generation models were written in Python using

Tensorflow. We use an existing implementation provided by Weise et al. of the FastQA

model for question-answering [39]. The above models describe the training models given

one question, answer, and paragraph at a time, but in practice, we use a batch size of

24 to feed in 24 such triplets. The details of the model can easily be extended to handle

another dimension, the batch size. The hidden sizes for all the LSTMs are set to be 100,

and the network is trained using the Adam optimizer with learning rate 0.001 for the answer

generation model and 0.0001 for the question generation model [17]. The question generation

model has ⇡ 14 million parameters in the model to train.
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Experiments and Results

4.1 Datasets

4.1.1 BioASQ

The BioASQ dataset is a biomedical question answering dataset consisting of questions

and answers to biomedical-related questions, along with given snippets and articles related

to the subject matter of the question [35]. The training data consists of 1799 questions that

can be divided into 4 types: yes/no, factoid, list, and summary. To answer each question,

the data also contains a list of documents and list of relevant snippets for every question.

Combining the snippets for a given question, we can view the biomedical question answering

task through the lens of reading comprehension. After concatenating all snippets to form

a passage, we observe that the mean length of a passage in the BioASQ dataset is ⇡ 483

words, the mean length of an answer is ⇡ 4 words, and the mean length of a question is

⇡ 10 words. Our focus in this work is on exact answers to factoid questions for two reasons.

First, we find that in the BioASQ dataset, of 618 factoid questions, 443 or (72%) of them

contain answers that are exact matches to phrases from the given snippets, and 97.6% of the

given answers have at least one word that was taken directly from the snippet. Thus, we

assume an extractive question answering model, or, in particular, we assume that the factoid

31
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answers are contained somewhere in the input snippets. Second, the evaluation measures are

simple: exact match accuracy and mean reciprocal rank (described in more detail in Section

4.2.4).

4.1.2 Stanford Question Answering Dataset

The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset

where input paragraphs are snippets from Wikipedia articles and are accompanied with

several questions and ground truth answers [28]. The dataset contains over 100000 question-

answer pairs on over 500 Wikipedia articles. SQuAD has the restriction that all answers to

questions are contained somewhere in the input text, so the problem is that of extractive

reading comprehension.

4.2 Results

Our core results are in the context of evaluating transfer learning from the SQuAD

dataset to the BioASQ dataset. Table 4.7 shows the results of pretraining the FastQA

question-answering model on SQuAD and finetuning on the BioASQ dataset with and with-

out generating synthetic question-answer pairs. The following sections investigate this in

more depth, isolating specific parts of the pipeline described in Chapter 3 and evaluating

them both qualitatively and quantitatively.

4.2.1 Embeddings

We find that performing low-rank matrix completion on the embedding matrix yields

significant improvements in preserving word similarities across vocabularies. A key hyperpa-

rameter for low-rank matrix completion is picking the dimensionality of the projected space,

or the rank of the low-rank matrix that approximates the embedding space. We experiment

with a rank of 100, 250, and 400.
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Embedding Type Word Similar words (ranked)

GloVe
hands hand, fingers, finger, knees, hold

hemoglobin albumin, myoglobin, glucose, platelet, hba1c
tumor tumour, tumors, malignant, cancers, cancer

Biomedical
hands feet, fingertips, forearms, toes, fingers

hemoglobin haemoglobin, hba1c, ferritin, rbc, deoxygenated
tumor tumour, tumors, tumours, metastasis, melanoma

Concatenated
hands hand, fingers, finger, arms, face

hemoglobin albumin, hba1c, myoglobin, glucose, platelet
tumor tumour, tumors, malignant, cancers, cancer

Projected
400

hands hand, fingers, finger, arms, face
hemoglobin albumin, hba1c, myoglobin, glucose, platelet

tumor tumour, tumors, malignant, cancers, cancer

Projected
250

hands hand, fingers, finger, knees, hold
hemoglobin albumin, myoglobin, glucose, platelet, hba1c

tumor tumour, tumors, malignant, cancers, pancreatic

Projected
100

hands hand, him, fingers, face, arms
hemoglobin albumin, lipid, glucose, ldl, lipids

tumor tumors, tumour, malignant, pancreatic, prostate

Table 4.1: Embedding Word Similarities for words in GloVe and Biomedical vocabularies

First, we find that without the proposed initialization of the Soft-Impute algorithm to

a projection based on the fully specified entries of the embedding matrix, the completed

values in the original embedding matrix are very close to 0, and the projected space is

almost equivalent to using a traditional dimensionality reduction algorithm such as PCA

[4]. With the proposed initialization that exploits the structure of the embedding matrix,

we see significant improvements in the quality of the resulting projection. All the results

demonstrated below assume this initialization to the Soft-Impute algorithm.

Table 4.1 shows top 5 ranked words in the embedding space for three words: hands,

hemoglobin, tumor, all of which appear in both the GloVe and biomedical vocabulary. We

see that in the concatenated embedding space, there is a strong bias towards words in the

GloVe embedding space. For example, the top similar words for the word hemoglobin in

the concatenated embeddings are almost identical to the top similar words in the GloVe
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embedding space and the top similar words in the biomedical space are lost. Even in the

projected subspaces of rank 400, 250, and 100, we see that the words have a bias towards

words in the GloVe embedding space. This could be due to two reasons. First, because

the biomedical words are likely in a di↵erent space than the GloVe embedding vocabulary

words, when evaluating the raw cosine similarities between two words, these similarities in

di↵erent spaces are not directly comparable. Secondly, the total vocabulary contains many

more words from the GloVe embedding vocabulary than the biomedical vocabulary, so it is

natural for a low-rank approximation of the full embedding matrix to optimize on capturing

latent factors that capture similarities across the GloVe embeddings.

To more thoroughly evaluate the quality of the low-rank approximation, we examine the

specific example of the words infiltrate and infiltrates, which was the example provided

in Section 3.1 as the motivation for performing low-rank matrix completion. Recall that both

of these words appear in the biomedical vocabulary, but only the word infiltrates appears

in the GloVe vocabulary. In the concatenated embedding space, the cosine similarity between

the two words infiltrate and infiltrates drops from 0.89 in the biomedical embedding

space to 0.39, due to the leading zeros in the embedding for the word infiltrate. To evalu-

ate the quality of low-rank matrix completion, we can observe the cosine similarity between

these two words before and after performing low-rank matrix completion. For the specific

pair of words infiltrate and infiltrates, Table 4.2 shows the raw cosine similarities of

the two words as well as the rank of the word infiltrate from infiltrates in a nearest

neighbors search across the full embedding space. This shows that for k = 250, the low-rank

matrix completion algorithm projects the two words infiltrate and infiltrates closer

together in the embedding space, suggesting that the low-rank matrix completion approach

is a large step towards projecting both embeddings into a lower-dimensional subspace. The

400-dimension and 100-dimension projected spaces do not perform as well, which highlights

the traditional bias-variance tradeo↵. While a 100-dimensional projection yields the highest

raw cosine similarity for these words across the di↵erent projections, the word infiltrate

is ranked at position 13 in a nearest neighbor search. This indicates that while the words
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Embedding Type Cosine Similarity infiltrate Rank

Concatenated 0.39 19
Projected 400 0.34 67
Projected 250 0.56 4
Projected 100 0.58 13

Table 4.2: Embedding Word Similarities for words in GloVe and Biomedical vocabularies

infiltrate and infiltrate were projected closer to each other, other extraneous words

might also be mapped closer. Intuitively, since the GloVe and biomedical vocabularies are

of rank 300 and 200 respectively, there is unlikely to be a low-rank subspace with rank less

than 200 that spans both of these spaces. After examining the singular values of the GloVe

and biomedical embeddings, we find that both matrices are relatively well-conditioned (the

ratio of their highest singular value to their lowest singular value is fairly low), which sup-

ports our hypothesis that there is unlikely to be a low-rank subspace of rank less than 200

that spans both spaces. For all experiments that follow, we use a word embedding space

projected down to 250 dimensions using the Soft-Impute method [21], since that gives the

best results relative to the other low-rank embedding projections.

4.2.2 Generated Answers

Before discussing the experimental evaluation of the answer generation module on the

BioASQ dataset, it is prudent to define a heuristic for the quality of a ”good” answer when

given any context paragraph in the BioASQ dataset. Examining the BioASQ dataset ground

truth answers, we define four classes of answers that define good answers. To get an insight

into the distribution of the data, we sample 50 answers at random from the BioASQ dataset

and examine their distribution over these classes. These four classes of answers are:

1. Nouns : Biomedical terms that are objects of sentences in the context paragraph. These

are typically answers where a noun phrase (some biomedical syndrome, disease, en-
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zyme, etc.) is an object being acted upon in a sentence. Of the 50 sampled answers,

36 are of this form.

2. Adjectives : In particular, these adjectives typically describe an important biomedical

term. For example, in the phrase autosomal recessive mode of inheritance, an

answer term might be autosomal recessive. Of the 50 sampled answers, 3 are of

this form.

3. Causal relationship: An answer could be a phrase indicating the function of some

biomedical concept, or a relationship between two terms. Of the 50 sampled questions,

8 are of this form.

4. Number : In the BioASQ dataset, these answer phrases are typically answers to ques-

tions starting with the phrase ”How many”. Of the 50 sampled questions, 3 are of this

form.

The above distribution of answer types indicates that the two most frequently found

answe classes are noun phrases as well as answers that help identify causal relationships.

Intuitively, answers that encode causal relationships require much higher-level reasoning

to identify as possible answers, so our answer generation model outputting independent

tags per word in the paragraph is unlikely to capture this class of answers. However, if

we extrapolate from these classes of answers to the distribution of answers over the whole

dataset, we conclude that approximately 75% of the dataset contains answers of the form

of biomedical answers. We guide our qualitative analysis of generated answers using these

principles.

We first qualitatively evaluate the answer generation module by examining output tags

for sample paragraphs in the BioASQ dataset and discussing quality. The answer generation

module was trained for 15 epochs on the SQuAD dataset. We experimented with increasing

the number of epochs for training, but found that increasing the number of epochs too

much causes overfitting on the SQuAD dataset. This causes the phenomenon that answers
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Paragraph Snippets (answers are bolded)

Without Answer Pruning Binary Probability Pruning
QT interval is shortened when QTc is

less than 350 ms ( 1st degree of

shortening ) ...

QT interval is shortened when QTc is less

than 350 ms ( 1st degree of shortening

) ...
The major tumour suppressor protein

, p53 , is one of the most well - studied
proteins in cell biology ...

The major tumour suppressor protein , p53
, is one of the most well - studied proteins
in cell biology ...

... Thus , flumazenil provides a safe

and e↵ective means of attenuating or
reversing the CNS - depressant e↵ects

of benzodiazepines whenever indicated , e .
g . following benzodiazepine - induced
general anaesthesia , conscious
sedation , or after benzodiazepine
overdose , either alone or in combination
with other agents ...

... Thus , flumazenil provides a safe and
e↵ective means of attenuating or reversing
the CNS - depressant e↵ects of
benzodiazepines whenever indicated , e . g .
following benzodiazepine - induced general
anaesthesia , conscious sedation , or after
benzodiazepine overdose , either alone or in
combination with other agents ...

Table 4.3: Identified Answers with and without Binary Probability Pruning

predicted on paragraphs from the BioASQ dataset tend to be words that appear frequently

in the SQuAD dataset. These words are usually not biomedical terms or nouns, but instead

commonly used adjectives, so these answers do not model the intended distribution of the

BioASQ dataset.

As discussed in Section 3.2.1, we employ a variety of answer pruning techniques to extract

relevant answer snippets that model the distribution of answers in the BioASQ dataset.

Given the naive strategy discussed by Golub et al., we find that the answer generation

model over-predicts and labels many of the words in a given paragraph as potential answers,

as shown in Table 4.3. The model makes several mistakes in including partial sentences as

answers or partial phrases. For example, the phrases QT interval is shortened and -

studied proteins split sentences unnaturally and do not serve as good answers.

We now compare the naive approach with our approach of introducing various techniques

of answer pruning. The first answer pruning approach is Binary Probability Pruning (refer
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to Section 3.2.1). Over an entire paragraph, we ranked each answer segment by its average

likelihood over the segment of each word being tagged as not NONE, as outputted by the

model. As shown in Figure 4.3, this strategy performs poorly at identifying answers and

prunes answers that could fall into noun or causal relationship answer classes (for example,

the phrases p53 and reversing the CNS-depressant effects). To combat this issue,

we use the answer pruning approach of Biomedical Tag Probability Pruning, which ranks

segments by average likelihood of the specific tag assigned to each word, eliminates segments

not of the form {IOB START, IOB MID, ..., IOB END}, and eliminates segments where

there is not at least one word in the answer segment exclusively present in the biomedical

vocabulary and not present in the GloVe embedding vocabulary. In addition, empirically,

we find that restricting the answer segment to be a segment of size larger than 1 gives

more relevant answer terms. As shown in Figure 4.4, this approach yields more terms

that are biomedical terms and fall in the Nouns answer class. Specifically, phrases such

as QT interval and benzodiazepine overdose are good biomedical phrases that could be

potential answers. This approach is also beneficial in splitting answer segments. For example,

without answer pruning, the phrase QT interval is shortened was one answer. However,

because we allow segments to end with the IOB END tag, the Biomedical Tag Probability

Pruning approach was able to prune the part of the answer that was a trailing verb, yielding

a better high-quality answer. However, this approach also has its limitations. For example,

a few generated answers might still span across sentence boundaries and include partial

phrases that are incoherent such as a begin parentheses with no matching end parentheses.

To get a quantitative evaluation of the generated answers, we manually annotate gener-

ated answers as one of the answer classes or as a special irrelevant answer class. We sample

50 generated answers and find the following distribution:

1. Nouns : 30 of the 50 answers are in this answer class. An example generated answer

(bolded) of this form in the dataset is: Benzodiazepine ( BZD ) overdose ( OD )

continues to cause significant morbidity and mortality in the UK.
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Paragraph Snippets (answers are bolded)

Without Answer Pruning Biomedical Tag Probability Pruning
QT interval is shortened when QTc is

less than 350 ms ( 1st degree of

shortening ) ...

QT interval is shortened when QTc is less
than 350 ms ( 1st degree of shortening ) ...

The major tumour suppressor protein

, p53 , is one of the most well - studied
proteins in cell biology ...

The major tumour suppressor protein

, p53 , is one of the most well - studied
proteins in cell biology ...

... Thus , flumazenil provides a safe

and e↵ective means of attenuating or
reversing the CNS - depressant e↵ects

of benzodiazepines whenever indicated , e .
g . following benzodiazepine - induced
general anaesthesia , conscious
sedation , or after benzodiazepine
overdose , either alone or in combination
with other agents ...

... Thus , flumazenil provides a safe and
e↵ective means of attenuating or reversing
the CNS - depressant e↵ects of
benzodiazepines whenever indicated , e . g .
following benzodiazepine - induced general
anaesthesia , conscious sedation , or after
benzodiazepine overdose , either alone
or in combination with other agents ...

Table 4.4: Identified Answers with and without Biomedical Tag Probability Pruning

2. Adjectives : 2 of the 50 answers are in this answer class. An example generated an-

swer (bolded) of this form is: Caspases are the ultimate executors of the apoptotic

programmed cell death pathway.

3. Casual relationship: 1 of the 50 answers is in this answer class. An example generated

answer (bolded) of this form is: The emerging clinical implication , supported by recent

epidemiological studies, is that �AR - blockers and drugs interfering with RANKL

signaling , such as Denosumab , could increase patient survival if used as adjuvant

therapy to inhibit both the early colonization of bone by metastatic breast

cancer cells and the initiation of the ” vicious cycle ” of bone destruction induced

by these cells. Note that this example answer is not perfect, since the word ”both” is

followed by only one reason, but we include it in this category nonetheless.

4. Number : 2 of the 50 answers is in this answer class. An example generated answer
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(bolded) of this form is: Flumazenil was administered to 80 patients in 4504 BZD.

5. Irrelevant : 15 of the 50 answers were classified as phrases ill fit to be good answers. This

class can be segmented into errors that exclude certain important words in an answer,

errors where biomedical terms in a sentence that are not the object of the sentence are

identified as answers, and answers include extraneous words such as trailing verbs in

the identified answer.

This distribution over the answer categories is mostly similar to the distribution of the

answers observed in the BioASQ dataset, with a key di↵erence being the lack of casual

relationship answers. As discussed earlier, this is expected due to the simple nature of this

model.

4.2.3 Generated Questions

After generating answers in the BioASQ dataset from the answer generation module, the

next step in the pipeline is to generate corresponding questions for each generated answer

using the question generation module described in Section 3.3. Because a quantitative metric

for evaluating a specific question is di�cult to come up with, we qualitatively judge generated

questions.

Our question generation model is trained for 20 epochs on the SQuAD dataset. Similar

to the answer generation model, the hyperparameter of the number of epochs to train on

SQuAD was crucial to ensuring high quality generated questions. This is likely because

during training, the model overfits to the SQuAD data and questions. Additionally, since

the word embeddings matrix is finetuned during training, the word embeddings would likely

become more skewed towards the GloVe vocabulary, making evaluation on the BioASQ

dataset tougher.

When evaluating the quality of questions, we observed that the quality of answers has

a very strong correlation with the quality of questions. This is expected since the model
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cannot generate a coherent sentence whose answer is a stream of unimportant words. Thus,

we observe that given the answer classes mentioned in the previous section, the number of

noisy or poor generated questions is lower bounded by the size of the Irrelevant answer class.

Another key observation for our question generation model was that the copy predictor in

the latent predictor network dominated most of the words generated in a question. Keyword

phrases such as the beginning question word such as What or Which were typically generated

using the word generation predictor followed by a stream of copied words from the para-

graph. This is encouraged during training as well, because the loss function for training only

measures a cross entropy loss on the outputted question tokens against the ground truth,

which is easily optimized by copying words from the input paragraph. This implies that the

size of the input context paragraph would strongly influence the quality of the generated

question, which is what we observed empirically. When the size of the input paragraph was

too large, the model was more likely to output incoherent sentences. This is likely because

the copy predictor is outputting a probability distribution over a larger amount of words

(the size of the context paragraph), so it is less likely to have a relevant exact phrase copied

word for word into the generated question. To solve this, for any answer segment in the

context paragraph, we feed in only the surrounding two sentences to the question genera-

tion model rather than the entire context paragraph, which we find significantly improves

question coherence.

Table 4.5 and Table 4.6 show examples of successes and failures for generated questions.

In this table, we only show one or two sentences around the answer segment for readability.

The successes of the question generation model are usually dominated by the copy predictor.

The model clearly learns a syntactic grammar structure for the questions, as seen by the

questions in Table 4.5. Additionally, the model learns to identify actors in sentences as

words that should be copied to the generated question. For example, for the question The

Type III is associated with homozygosity for what?, the model learns to only copy

the noun phrases Type III and homozygosity to the generated question instead of the full

phrase, while simultaneously maintaining coherency. However, these questions are still very
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simple and typically involve copying large phrases from the input paragraph. To generate

questions that approach the quality of questions in the BioASQ dataset, we believe the model

must capture long-term dependencies between biomedical entities and incorporate domain

knowledge into the model. We hypothesize that because the model is trained on SQuAD data

which is of a lesser di�culty than the biomedical question answering domain, the model only

generates questions that would be regarded as trivial compared to the di�culty of questions

in the BioASQ dataset.

In Table 4.6, we explore the various limitations of the question generation model. A large

theme of the generated questions is the di�culty of the model to capture long-term dependen-

cies in the context paragraph. This can be seen very clearly in the generated question: What

is shortened when QTc is less than QTc?. The last word should be 350ms instead, and

this small error renders the question meaningless. Manually investigating questions reveals

a common trend of phrases repeated indefinitely. For example, the phrase the paternal

of the of the deleted of the deleted of the paternally paternal appears in one

of the generated questions, which highlights the inability of the model to capture long-term

dependences in the paragraph. To investigate this further, we examined the output of several

generated questions on the SQuAD test set during training. We found that, in this dataset,

the issue of long-term dependencies is much less prevalent. This suggests that the LSTM

in the question generation module might be overfitting to the SQuAD dataset. This also

highlights the importance of the approach discussed earlier of using an embedding low-rank

approximation to project the word embedding distributions of the SQuAD and BioASQ

dataset into a common space. In some of the generated questions, the question generated is

not relevant purely because the answer phrase is irrelevant, which we regard as a failure of

the answer generation module.



CHAPTER 4. EXPERIMENTS AND RESULTS 43

Paragraph Snippets (answers bolded) Generated Question
... Mutations of the TYR gene lead to
Oculocutaneous Albinism type 1 ( OCA1 ) ,
the most common type of albinism in
humans ( OMIM accession number 203100 )
. In humans mutations in the TYR gene are
associated with type 1 oculocutaneous

albinism ( OCA1 ) that leads to reduced or
absent pigmentation of skin , hair and eye ...

What are mutations in the TYR gene
associated with ?

... Necrobiosis lipoidica diabeticorum is a
rare disease of unclear etiology , that occurs
in about 1 % of diabetic patients .
Necrobiosis lipoidica diabeticorum (
NLD ) is a rare , granulomatous
inflammatory skin disease of unknown
origin , sometimes associated with diabetes
mellitus ...

What is NLD ?

... Commotio cordis is a rare type of blunt
cardiac injury in which low impact chest
trauma causes sudden cardiac arrest ,
usually occurs from being struck by a
projectile during sports . Commotio cordis
due to blunt trauma to the precordium is
a rare cause of death in young athletes ,
occurring less frequently than all of the
other athletics - related deaths ...

What is the rare cause of death in young
sports ?

... cubense ( Foc1 ) which caused
widespread Panama disease during the first
half of the 20th century but is susceptible to
Tropical Race 4 of Foc ( Foc TR4 ) which is
threatening world banana production ...

What caused the Panama disease during
the 20th century ?

... Type III hyperlipoproteinemia is
characterized by delayed chylomicron and
VLDL remnant catabolism and is associated
with homozygosity for the apoE - 2 allele ...

The Type III is associated with
homozygosity for what ?

Table 4.5: Generated Questions Successes
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Paragraph Snippets (answers bolded) Generated Question
... Numerous other drugs are in earlier
stages of development for HNSCC
treatment , including novel anti - EGFR

mAbs ( MEHD7945A , necitumumab , and
RO5083945 ) , small - molecule TKIs (
vandetanib , icotinib , and CUDC - 101 ) ,
EGFR antisense , and drugs ( temsirolimus
, everolimus , OSI - 906 , dasatinib , and
PX - 866 ) intended to overcome resistance
to anti - EGFR agents ...

What is a term used for MEHD7945A ,
MEHD7945A , and other are of the novel
named resistance ?

... This contrasts with the Prader - Willi
syndrome ( PWS ) in which a similar
deletion of the paternally contributed
chromosome 15 is observed . However , in
contrast to the paternal inheritance of the
deleted chromosome 15 observed in the
majority of PWS patients ...

What is the paternal of the of the deleted of
the deleted of the paternally paternal
contrast to PWS ?

... CMT4D disease is a severe autosomal
recessive demyelinating neuropathy with
extensive axonal loss leading to early
disability , caused by mutations in the N -

myc downstream regulated gene 1 (
NDRG1 ) ...

What was the severe early location of the
motor of molecular disease ?

... 70 - gene signature . The 70 - gene
signature ( MammaPrint ) is a prognostic
test used to guide adjuvant treatment

decisions in patients with node - negative
breast cancer . 70 - gene signature ...

What decisions is a prognostic test used to
use in patients ?

... QT interval is shortened when QTc is
less than 350 ms ( 1st degree of shortening )
...

What is shortened when QTc is less than
QTc ?

Table 4.6: Generated Questions Failures
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Approach Exact Match Score Mean Reciprocal Rank
SQuAD 17.5% 0.297
BioASQ 30% 0.349
SQuAD + BioASQ 35% 0.427
SQuAD + A

gen

+ Q

gen

12.5% 0.184
SQuAD + A

gen

+ A

p

+ Q

gen

12.5% 0.192
SQuAD + A

gen

+ A

p

+ Q

b

8.75% 0.176
SQuAD + A

gen

+ A

p

+ Q

gen�trunc

13.75% 0.216
SQuAD + BioASQ + A

gen

+ A

p

+ Q

gen�trunc

35% 0.43

Table 4.7: Core Transfer Learning Results on the BioASQ Dataset

4.2.4 Transfer Learning

Table 4.7 shows our main results for evaluating transfer learning from the SQuAD dataset

to the BioASQ dataset. For pre-training, we train a FastQA model (using an existing

implementation) on the SQuAD dataset for 12000 iterations [38]. After training, the model

achieves a 70% test F1 score on the SQuAD dataset. We keep this model fixed and finetune

on various datasets and evaluate performance on a held-out validation set from the BioASQ

dataset during finetuning. Due to the small nature of the BioASQ dataset, this validation set

consists of only 80 questions. Our evaluation measures are two-fold, and they are the same

evaluation measures used for evaluating submissions to the BioASQ challenge [35]. First,

since we are only considering factoid questions, we report Exact Match Score. An exact

match occurs when the predicted answer is exactly the labeled answer in the dataset. The

Exact Match Score is the percentage of exact matches on the validation dataset. The second

evaluation measure is Mean Reciprocal Rank. The FastQA model outputs a list of answers

ranked by the probability of each answer being correct. The reciprocal rank is 1 divided by

the rank of the correct answer in the list of answers produced by the FastQA model. The

mean reciprocal rank in the validation set is the average reciprocal rank over all answers in

the validation set.

We now describe the various models described in Table 4.7. All models for the answer
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generation and question generation module use a projected embedding space of size 250.

The SQuAD approach is the FastQA model pre-trained on SQuAD and results are directly

evaluated on the BioASQ dataset without any finetuning. The SQuAD + BioASQ is our

baseline of pre-training on SQuAD and finetuning on the BioASQ dataset. The A

gen

is

the answer generation module described in Chapter 3, with only basic Binary Probability

Pruning. The model A
gen

+A

p

indicates the answer generation module with Biomedical Tag

Probability Pruning The Q
gen

model is the question generation module described in Chapter

3 trained on the SQuAD dataset and evaluated on full paragraph snippets from the BioASQ

dataset. The Q
gen�trunc

model is the same question generation model, but during evaluation,

we only pass in as input the two sentences surrounding the identified answer. The Q
b

model

is a naive baseline model for question generation that does not use the question generation

module described, but instead uses a rule-based system to generate questions. This system

simply replaces an identified answer segment in a sentence by the word what. This baseline

serves as an extreme case for the copy predictor in the question generation module. The

BioASQ + A

gen

+ A

p

+ Q

gen�trunc

model is a model that is finetuned on the synthetic

data along with the golden BioASQ training data. Specifically, every 4 minibatches during

training, we sample a batch of synthetic data. This serves as a form of regularization to

avoid overfitting on the synthetic data during training. For all experiments, the generated

synthetic data is around 6 times larger than the BioASQ dataset, with around 3000 synthetic

question-answer pairs on the BioASQ dataset.

We see minor improvements in performance due to some of the methods described in

Chapter 3, specifically answer pruning and paragraph truncation. This improves mean re-

ciprocal rank from 0.184 to 0.216. Additionally, we find that the question generation module

still beats the naive question generation baseline of copying entire sentences from the input

paragraph. This suggests that the question generation model is learning some additional

information about which keywords belong in the question, which is promising for improving

transfer.

We have two overall baselines for testing transfer, which are the SQuAD and SQuAD +
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BioASQ approach described above. With the exception of the last model, all models were

trained only on synthetic data, so for the method to yield better transfer, the performance of

our data-augmented models would be between the SQuAD and SQuAD + BioASQ approach.

Since the BioASQ data is the ground truth training data, we would not expect our synthetic

data to be of higher quality than that. However, we find that training only on synthetic

data performs worse overall than the SQuAD model. This strongly implies that the synthetic

training data is unlike the distribution of the BioASQ training set, so the model is overfitting

to the synthetic data during training. This can also be related to catastrophic forgetting,

a commonly observed phenomenon in transfer learning tasks [16]. Catastrophic forgetting

occurs when a model is trained for a specific task, asked to learn a new task by finetuning,

and the model ends up forgetting the first task by performing worse on the source task after

finetuning. In our example, catastrophic forgetting might result in an improved quality of

answering questions that the BioASQ synthetic data contains, but the model might forget

other nuances of the SQuaD dataset that allowed it to perform well on the BioASQ dataset.

We hypothesize that even without catastrophic forgetting, the quality of the synthetic data

is poor, as described in the preceding sections. This likely stems from the poor quality of

questions generated by the question generation module. Recall that the number of irrelevant

questions is likely bounded the number of irrelevant answers, which from a random sampling

of 50 generated questions, we observed to be around 30%. This would imply that at least

30% of our training data consists of noisy questions and answers. In practice, we observed

that up to 50% of the training data consists of noisy questions and answers due to additional

mistakes by the question generation model that were discussed in Section 4.2.3. A model that

learns to overfit on these questions will clearly have a problem generalizing to the validation

set. Our best-performing model is the model trained on interleaved synthetic and true data

batches. This model performs almost identically to the SQuAD + BioASQ model, and we

believe the di↵erence in mean reciprocal rank (0.43 vs 0.427) is not significant enough to

make a case for improved transfer. It is expected that these two models are almost identical,

since the synthetic data is seen rarely during training (once every 4 batches).
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Conclusion and Future Work

In this thesis, we explored an approach for generative data augmentation in the BioASQ

dataset by generating synthetic question-answer pairs. The goal of this was to improve

transfer learning on a model pre-trained on SQuAD by increasing the amount of data the

model could utilize during finetuning. Using an approach derived from two-stage synthesis

networks, we found that generating high-quality synthetic question-answer pairs was a very

di�cult task on the biomedical domain. Compared to domains such as the NewsQA domain,

where two-stage synthesis networks have shown success in generative data augmentation, the

overall quality of synthetic question-answer pairs in the biomedical domain is low.

We explored several arguments as to why the biomedical task is harder as well as some po-

tential solutions. Firstly, because the vocabularies between the SQuAD dataset and BioASQ

dataset are so di↵erent, we employed two di↵erent word embeddings, the GloVe embedding

and Biomedical Word2Vec embedding. Simply concatenating these embeddings would result

in a severe feature mismatch between training and testing, so we used a low-rank matrix

completion algorithm to project both embeddings into a common subspace. Empirically,

inspecting nearest neighbors in the embedding space of words shows that the low-rank ma-

trix completion approach is a significant step towards merging the two embedding spaces.

Future work in this vein could include jointly training an embedding space over the GloVe
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and Biomedical vocabularies using Word2Vec. Additionally, a more in-depth exploration can

be done into the theory of picking the rank of matrix that approximates the ambient space

of the concatenated embeddings. These approaches could yield significant improvements for

the quality of generated answers and questions, since the input to the model would be in a

common space during both training and testing.

To improve answer generation, we considered two main strategies for answer extraction

and pruning, Binary Probability Pruning, and Biomedical Tag Probability Pruning. We

found that Biomedical Tag Probability Pruning significantly improves the quality of gener-

ated answers. These answers are still typically biomedical concepts or entities. Considering

the answer classes in the BioASQ dataset, a future area of work would be to focus on gen-

erating answers from each of these classes individually. A separate answer generation model

could be trained for each of these answer classes: Nouns, Adjectives, Casual Relationships,

and Numbers. Then, we could sample from these answer generation models independently

based on the observed distribution of answer classes in the BioASQ dataset. A key insight

into why the model’s performance deteriorates during finetuning is likely that the data dis-

tribution of the synthetic question-answer pairs is di↵erent from the data distribution of

the ground truth questions and answers in the BioASQ dataset. Resolving the di↵erence in

distribution for generated answers is the first step in tackling this problem. Another area of

future work is qualitatively comparing the output of the answer generation module with a

baseline such as a Named Entity Recognition system.

With better generated answers, we believe the question generation module will simulta-

neously improve in quality. Many of the generated questions are meaningless purely because

the answer span identified by the answer generation module is incomplete or irrelevant. Even

for feasible answer spans, we think there is large scope for improvement in the quality of

generated questions. One key problem is the inability of the question generation model to

tackle long-term dependencies - this could be due to lack of LSTM hyperparameter tun-

ing such as the size of the hidden layers. Additionally, the generated question distribution

likely does not match the distribution of the questions in the BioASQ dataset. The question
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generation module relies heavily on the copy predictor in the latent predictor network, so

relevant questions are mostly copied from the input paragraph. Future work would be to

find ways to artificially introduce question diversity, perhaps by introducing a regularization

constraint in the loss function during training to bound the number of words copied from

the input paragraph. Finally, during training for both the answer and question generation

module, picking the number of epochs to train on the SQuAD dataset is a key parameter

in determining the quality of generated answers and questions at test time on the BioASQ

dataset. This is because the number of training epochs controls the degree of overfitting

of the answer and question generation modules to the SQuAD dataset. Future work would

include coming up with a quantitative evaluation of generated answers and questions to

measure the degree of overfitting and more precisely pick the number of training epochs.

The task of transfer learning for biomedical question answering is a di�cult task, com-

plicated by the di�culty of the biomedical domain as well as the lack of labeled data.

Introducing biomedical domain knowledge into the answer and question generation modules

would likely yield the most improvements for transfer, since the model would be able to

more precisely identify relationships between biomedical entities. A naive method for doing

this would be to generate questions using the current question generation module and map-

ping biomedical entities and words to synonyms using a concept ontology. We believe that

despite the negative transfer demonstrated by using synthetic question-answer pairs in the

biomedical domain, the data augmentation for transfer learning problem formulation is still

a very strong and promising direction of research. We hope that the pipeline proposed in

this thesis is a step towards smarter data augmentation for biomedical question-answering.
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