
Understanding the Convergence of Adversarial Training for Overparameterized
Linear Neural Networks

by

Darshan Bhavin Thaker

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science in Computer Science

at

Columbia University

Committee in charge:

Professor John Wright
Professor Daniel Hsu

Professor Alexandr Andoni

Understanding the Convergence of Adversarial Training for Overparameterized

Linear Neural Networks

Copyright 2019

by

Darshan Bhavin Thaker

1

Abstract

The goal of this thesis is to understand the convergence of adversarial training for overparametrized

neural networks. Adversarial training can be formalized as a min-max optimization game, where

one player attempts to minimize a loss function, while an adversary gets to perturb inputs to

maximize the same loss function. With the recent wave of results that demonstrate the linear

behavior of training infinite-width networks with gradient descent, we build upon these results

that explain some of the empirical successes of adversarial training. A recent result by Gao et al.

uses arguments that follow Neural Tangent Kernel (NTK) theory to demonstrate the convergence

of adversarial training under general adversaries assuming that the adversary can solve the inner

maximization to optimality. This work is concerned with justifying that assumption, proving that

in some special cases when we use a projected gradient ascent adversary, we can solve the inner

maximization to optimality for linear neural networks. We find that running projected gradient

ascent initialized at the center of the constraint ball provably yields a global maxima of the inner

maximization problem, and this fixed initialization is preferred to running randomly initialized

projected gradient ascent. If we run randomly initialized projected gradient ascent, finding a

global maximum of the inner maximization problem becomes tougher over the course of adversarial

training. We then extend to the non-linear network case and provide some empirical evidence on

the positive effect of overparameterization on the optimization landscape of the inner maximization

problem.

Contents

Contents i

1 Introduction 1

2 Background 4
2.1 Problem Setup . 4

2.1.1 Adversarial Training Under General Adversaries 5
2.1.2 Adversarial Training Under PGA Adversary 7

2.2 Neural Tangent Kernel . 7

3 Theoretical Results: Convergence For Linear Networks 9
3.1 Convergence of Inner Maximization . 9

3.1.1 Maximizing a Quadratic on the Unit Sphere 13
3.2 Extending to Outer Minimization . 22

4 Experiments 23
4.1 Linear Networks . 23
4.2 Non-Linear Networks . 25

5 Conclusion and Future Work 26

References 28

i

CONTENTS ii

Acknowledgments

I would like to thank Prof. John Wright for advising me over the last year on this project. His

guidance and advice has been crucial in helping me reason about different problems, gain clarity on

how to break down a research question, and make steady progress. I am also very grateful to Sam

Buchanan for being so generous with his time, helping me with some of the proofs in this thesis,

and helping me articulate my thoughts better. Finally, I would like to thank Prof. Daniel Hsu and

Prof. Alexandr Andoni for being on my committee.

Chapter 1

Introduction

While the field of deep learning has achieved large empirical successes, theoretically underpinning

the workings of neural networks has been an open problem for many years. In particular, it has been

observed that functions learned by neural networks are not stable against small input perturbations,

and predictions can wildly change even when inputs are perturbed slightly [15]. This motivates the

research question of understanding the existence of adversarial examples for neural networks and

how we can develop algorithms to avoid adversarial examples. Figure 1.1 highlights some cases of

adversarial examples that can fool neural networks trained for an image recognition task. To the

human eye, these perturbations are not visually discernible, however they can fool a neural network

to incorrectly classify all perturbed images.

Figure 1.1: Adversarial examples for AlexNet trained on the ImageNet dataset. Left column
shows correctly classified images and right column shows incorrectly classified images (which are
all classified as ostriches). Middle column shows the image difference between the left and right
column. (Figure taken from [15]).

In an effort to train more robust neural networks, many methods have been developed; em-

pirically, one of the simplest, yet strongest algorithms to yield robust neural networks has been

adversarial training, which is the focus of this thesis [14]. The goal of adversarial training is to for-

1

CHAPTER 1. INTRODUCTION 2

mulate a min-max optimization problem considering a robust loss framework instead of a traditional

empirical risk minimization (ERM) framework. Specifically, instead of using a first-order method

like stochastic gradient descent to minimize a loss function over an input dataset, we can instead

consider a game. In this game, the first player, an adversary, first seeks to maximize the given loss

function over some perturbation set for a datapoint, which yields an adversarial example. This is

known as the inner maximization step. Then, the goal of the second player, the robust learner, is

to minimize the loss function for this adversarial example. This is known as the outer minimization

step. This game continues until the robust learner has converged to some model, with the hope

that this trained model is robust to adversarial examples that come from the given perturbation set.

Theoretically understanding the convergence of adversarial training when the model is a neural

network poses many challenges. Firstly, to yield strong adversarial examples during training, we

hope to optimally (or near-optimally) solve the inner maximization problem, which is a non-concave

optimization problem for non-linear neural networks. Empirically, the community has observed that

using a projected gradient ascent (PGA) algorithm to solve the inner maximization gives strong

adversarial examples and is widely regarded as a state-of-the-art defense method [3]. Furthermore,

the outer minimization step is a non-convex optimization problem. Despite this, simple first-order

descent methods have enjoyed large empirical successes [11, 9], and characterizing the theoretical

guarantees of these methods is a long-standing open problem.

In the past, there have been several works on attempting to analyze the convergence of gradient

descent for empirical risk minimization. Efforts to understand the empirical successes include a

study of the geometry of optimization landscapes for neural networks [4] as well as analyzing the

trajectory of network parameters [1]. Recently however, there has been a wave of progress and

new directions of research which utilizes the fact that these networks are usually overparameterized

i.e. the number of parameters of the neural network are far greater than the number of training

datapoints [13, 2, 5]. One interesting work by Jacot et al. finds a connection between gradient

descent on overparameterized neural networks and kernel methods [10]. They introduce the Neural

Tangent Kernel (NTK), an object that arises from the analysis of gradient flow on neural networks.

This kernel is a Gram matrix of gradient inner products, and its properties determine training dy-

namics of neural networks. In the infinite-width limit, they show that this kernel is constant at

initialization, which allows us to study the properties at random initialization and characterize

training dynamics of neural networks.

Leveraging insights from the Neural Tangent Kernel, Gao et al. analyzed the convergence of

the outer minimization step in adversarial training assuming some arbitrary adversary to solve the

CHAPTER 1. INTRODUCTION 3

inner maximization step [8]. They show that for sufficiently overparameterized neural networks,

running projected gradient descent (projecting onto a specific convex set) converges to a network

whose robust loss with respect to the chosen adversary is within ε of the optimal robust loss with

respect to the same adversary.

However, a key question remains: can we show that adversarial training yields a network of

low robust loss with respect to an optimal adversary i.e. an adversary than can solve the inner

maximization to optimality? In this thesis, we give a partial answer to this question, leveraging

the work of Gao et al. to shift the problem focus to understanding the convergence of a fixed

adversary, specifically the projected gradient ascent adversary, for the inner maximization problem.

Our contributions are as follows:

• If we posit a hypothesis class of linear neural networks, `p perturbation models, and a mean-

squared error loss function, running projected gradient ascent initialized at the center of the

constraint ball always converges to a global maximum of the inner maximization problem.

This claim along with the results of Gao et al. allows us to prove that with a projected gradient

ascent adversary with a fixed initialization scheme, we can find linear neural networks that

are provably robust to optimal adversaries.

• If we modify the initialization scheme to be randomly initialized over the constraint ball,

as is common in practice, at random initialization of the neural network, we can show that

projected gradient ascent will converge to a global maximum under some data density as-

sumptions. The randomness arises from the choice of network weights, the choice of data,

and the choice of initialization point for running projected gradient ascent. However, as ad-

versarial training proceeds, assuming the outer minimization problem succeeds in minimizing

the loss, the probability with which projected gradient ascent converges to a global maximum

decreases. This implies that randomly initialized projected gradient ascent becomes more

difficult as the network is trained. We empirically demonstrate this phenomenon and provide

some theoretical justifications under data assumptions.

• Extending to non-linear neural networks, we provide empirical evidence that overparameter-

ization benefits the optimization landscape of the inner maximization problem.

Chapter 2

Background

2.1 Problem Setup

We will use lowercase letters to denote row or column vectors, and uppercase letters for matrices.

We will use Ai to represent the ith row of A, or bi to represent the ith element of some row or

column vector. We begin our study with two-layer fully-connected neural networks of the form

f(x, b, A) =
m∑
i=1

biσ(〈Ai, x〉) (2.1)

Above, x ∈ Rd×1 is the input to the neural network f , which depends on two quantities, b ∈ R1×m

and A ∈ Rm×d. The quantity m represents the number of neurons in the hidden layer. We assume

that the output dimension is 1 (although it can be easily generalized to variable output dimensions

as well). We assume that m� d and m� n, which means the network is overparameterized. The

function σ(·) represents an activation function, which is typically the ReLU (Rectified Linear Unit)

function σ(x) = max(0, x). In this thesis, we consider two forms of activation function, the identity

function and the ReLU activation function. When the activation function is the identity function

σ(x) = x, the network becomes a linear network and can be written as:

f(x, b, A) = bAx (2.2)

The standard supervised learning task is: given n training examples and corresponding labels

{xi, yi}ni=1, we wish to minimize some Lipschitz, smooth, and convex loss function `(f(xi, b, A), y):

min
b,A

n∑
i=1

`(f(xi, b, A), y) (2.3)

4

CHAPTER 2. BACKGROUND 5

In this thesis, we will use the quadratic loss function (also known as the mean squared error loss)

throughout, so

`(f(xi, b, A), yi) =
1

2
‖f(xi, b, A)− yi‖22 (2.4)

As a note, this does not restrict our setup to only regression problems. We can pose any classification

problem as a regression problem where the network must regress on the given labels given the mean-

squared error loss function.

2.1.1 Adversarial Training Under General Adversaries

The motivation for adversarial training begins with the observation when models are trained using

the standard formulation above, also known as Empirical Risk Minimization (ERM), trained models

seem to be empirically very brittle to small perturbations in the input. Formally, this means for

some model f , given an example x that is classified as class y, we might be able to perturb x

slightly to obtain x′ such that f(x′) 6= y (i.e. the predicted class changes). To take an example in

the case of image classification, a valid perturbation might be to slightly rotate an image of a cat,

which does not change the underlying label, but can drastically affect a trained model output [14].

Adversarial training is a training strategy to train models that are robust to such perturbations.

We first formalize a framework for studying adversarial training, borrowed from the setup in [8].

Definition 2.1.1. A perturbation set B : Rd → P(Rd) is a function mapping to the powerset

of Rd. It captures the list of acceptable perturbations for any input in Rd. For example, for `p

perturbations, Bp(x, ε0) = {x′ : ‖x− x′‖p < ε0}.

In this thesis, we only consider `p perturbations, so we use B(x, ε0) to represent the ball of `p

perturbations.

Definition 2.1.2. A perturbation function A :W×Rd → Rd is a function that simply applies some

admissible perturbation to any input x given input as x as well as the weight space of the neural

network. Here, admissible means with respect to the chosen perturbation set B. Thus, A(W,x)

simply maps x to some x′ ∈ B(x).

Definition 2.1.3. A surrogate loss function LA(W) is defined to measure the loss under a pertur-

bation function applied to the data. Specifically,

LA(W) =
1

n

n∑
i=1

`(f(W,A(W,xi)), yi)

CHAPTER 2. BACKGROUND 6

where A(W,xi) represents a perturbation function applied to xi.

Definition 2.1.4. Define the robust loss as L?(W), which is LA(W) with A(W,xi) as the ”optimal”

perturbation, i.e. A(W,xi) = arg maxx∈B(x) `(f(W,x), y). Thus, the robust loss is the optimal loss

under the min-max problem posed in conventional adversarial training.

We define B(W0, R) =
{
W :

∥∥W (h) −W (h)(0)
∥∥
2
≤ R√

m
, h ∈ [H]

}
, which is a convex set denoting

a ball around the initialization of W (for R to be defined later). We will run projected gradient

descent on this set to learn W . Specifically, this algorithm is:

V k+1 = W k − α∇WLA(W k)

W k+1 = PR(V k+1)

Let W ? denote the optimal setting of the weights for the robust loss, given the constraint W ? ∈
B(W0, R). Thus, W ? = arg minW∈B(W0,R) L?(W). The main results of [8] are demonstrated be-

low, and they show the convergence of projected gradient descent to the robust loss induced by W ?.

Theorem 2.1.1 (From [8]). Given ε > 0, suppose R = Ω(1), and m ≥ max
(

Θ
(
R9H16

ε7

)
,Θ(d2)

)
.

If we run PGD on the convex set B(W0, R) for T iterations with step size α = O
(

ε
mH2

)
for

T = Ω
(
R2H2

ε2

)
, then with probability at least 0.99, we have that

min
k=1,...,T

LA(W k)− L?(W ?) ≤ ε

Theorem 2.1.2 (From [8]). If a robust classifier exists in the Reproducing Kernel Hilbert Space

(RKHS) of the NTK, there exists RD,B,ε such that when m = Ω

(
R4
D,B,ε
ε2

)
, with high probability, we

have that

L?(W) ≤ ε

and

W ∈ B(W0, RD,B,ε)

Putting these two theorems together, we have that with the given assumptions, with high probabil-

ity, the minimum surrogate loss LA(W k) over T iterations is at most ε. This shows that if we per-

form adversarial training, then the learned network is robust to attacks from the specific adversary

CHAPTER 2. BACKGROUND 7

A. In practice, however, we would like to reason about the robustness of the trained network to arbi-

trary adversaries (over a given perturbation set). If the adversary used during training is weak, then

ensuring robustness against this adversary is a weak claim. Observe that for the inner maximization

problem, if an adversary solves that problem to optimality, we have shown that the adversary used

during training is in fact a strong adversary since A(W,xi) ≈ arg maxx∈B(x) `(f(W,x), y).

2.1.2 Adversarial Training Under PGA Adversary

Instead of reasoning about general adversaries, which can be arbitrarily weak, we fix a popular

adversary: using projected gradient ascent to solve the inner maximization problem. Denote this

adversary as Ap. If we can show that projected gradient ascent (PGA) approximately solves the

inner maximization problem, then we will have shown that the network learned from adversarial

training has a low robust loss, since the surrogate loss is a a good proxy for the robust loss.

In general, for deep neural networks, the inner maximization problem can be highly non-concave, so

this would seem to imply that we cannot solve it to optimality using a simple first-order method like

projected gradient ascent [6]. To make insights into this problem, we hope to leverage insights from

recent work on understanding the behavior of gradient descent for optimizing overparameterized

neural networks.

2.2 Neural Tangent Kernel

To provide some intuition for the results in Theorem 2.1.1, we sketch the use of the Neural Tangent

Kernel, which motivates the analysis in proving that theorem [10]. Let fθ be a standard fully

connected neural network with parameters θ. Using discrete-time full batch gradient descent, we

can update the parameters θ of the neural network iteratively as follows:

θt = θt−1 − η∇θt−1L(fθt−1(X), y) (2.5)

To analyze how the parameters evolve, a natural conversion from Equation 2.5 is to consider the

time axis during gradient descent in the continuous domain as opposed to in the discrete domain.

This gives a continuous-time gradient flow equation for updating the network parameters, shown

below:

θ̇t = −η∇θtL(fθt(X), y)

= −η∇θtfθt(X)T∇fθt (X)L(fθt(X), y) (2.6)

CHAPTER 2. BACKGROUND 8

Above, θ̇t represents a time derivative of θt, which defines the gradient flow as a differential equation.

The second step follows from applying chain rule to expand the gradient of the loss with respect to

the parameters θt. Next, we can write how the function evolves across the continuous time domain

as another differential equation:

˙fθt(X) = ∇θtfθt(X)θ̇t

= −η∇θtfθt(X)∇θtfθt(X)T∇fθt (X)L (2.7)

Assuming that the neural network outputs a vector of dimensionality nL, the neural tangent ker-

nel is defined as Θt(X,X) = ∇θtfθt(X)∇θtfθt(X)T ∈ R(nL·n)×(nL·n). While this object is time-

dependent, Jacot et al. demonstrate that in the infinite-width limit, the NTK at initialization fully

determines training dynamics [10]. Furthermore, they derive an expression for the NTK in the

infinite width.

An important consequence of this is that we can view the network as being linearized around

its initialization, or that the network prediction for a point x f tθ(x) is approximately f0θ (x) +

∇θf0θ (x)(θt − θ0), where f0θ (x) represents the output of the network at random initialization for

parameters θ0 [12]. This implies that for sufficiently wide networks, weights do not need to move

much from random initialization in order to reach high accuracy on the given dataset. This is

part of the motivation for the explicit projection step in the projected gradient descent algorithm

outlined for adversarial training, since it explicitly enforces this constraint.

Chapter 3

Theoretical Results: Convergence For

Linear Networks

3.1 Convergence of Inner Maximization

Suppose that fθ(x) = bAx where b ∈ R1×m and A ∈ Rm×d. This is an overparameterized linear

network. Suppose that bi ∼ N(0, 1) and Aij ∼ N
(
0, 1

m

)
.

Lemma 3.1.1. For any fixed point x ∈ Rd, with probability at least 1− 3
d , ‖∇xfθ(x)‖2 concentrates

around
√
d with deviations on the order of

√
d

log(d) .

Proof. We begin by analyzing the squared norm ‖∇xfθ(x)‖22. We write out its value to get:

‖∇xfθ(x)‖22 = bAAT bT (3.1)

Step 1: Changing product of Gaussians to product of chi-squared distributions.

By the rotational invariance of Gaussians, we can multiply A by an orthogonal matrix and this

preserves norms. Specifically, we can always find an orthogonal U ∈ Rm×m such that bU = eT1 ‖b‖2,
where e1 ∈ Rm×1 is the first standard basis vector. Thus, under U , b is mapped to the unit vector

(scaled to be the same norm as b). Note we can always find such a U since U is an orthogonal

change of basis matrix. This means we can write the norm of the gradient as follows:

‖∇xfθ(x)‖22
d
= bUAATUT bT

= ‖b‖22 e1AA
T e1

= ‖b‖22 ·
∥∥eT1A∥∥22

9

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 10

The first line above follows from the fact that A is equal in distribution to UA. To see this, we

compare their density functions. Let p1 denote the density for A, and let p2 denote the density for

UA. We can consider a change of variables using a function f that maps from A to UA. Then, we

have that the density for p2 is:

p2(f(x)) = p1(x)/| det(Jf (x))|

Above, J(x) denotes the Jacobian of the transformation f , which is U . The determinant of this

Jacobian is always 1 or −1, which proves that p2 is equal to p1, or that A and UA are equal in

distribution. Rewriting the norm further, we have:

‖b‖22 ·
∥∥eT1A∥∥22 =

m∑
i=1

b2i ·
d∑
j=1

A2
0,j

=
m∑
i=1

b2i ·
d∑
j=1

(
1√
m
Ã0,j

)2

=
1

m

m∑
i=1

b2i ·
d∑
j=1

Ã2
0,j

where Ã0,j ∼ N(0, 1). This allows us to write the norm as 1
mXY , where X ∼ χ2

m, Y ∼ χ2
d, which

are standard chi-squared distributions with m and d degrees of freedom respectively.

Step 2: Ensuring chi-squared random variables X and Y concentrate in a ”nice” region close to

their expectation.

Let the variable we are interested in analyzing be Z = 1
mX

1
dY , where X ∼ χ2

m, Y ∼ χ2
d. Note that

dZ is equal in distribution to the norm we wish to analyze. Let E1 be the event that Z is far from

1 (for a value to be defined later), and let E2 be the event that both 1
mX and 1

dY are close to their

expectation, which is equal to 1. We know that

Pr[E1] = Pr[E1|E2] Pr[E2] + Pr[E1|Ec2] Pr[Ec2] (3.2)

≤ Pr[E1|E2] + Pr[Ec2] (3.3)

We start with the event Ec2, which is the probability that either 1
mX or 1

dY deviates from its

expectation, since this is easy to analyze. We will first argue that 1
mX concentrates around its

expectation. Because X is a chi-squared random variable with m degrees of freedom, we know

it is a sum of m squared standard normal random variables. Denote these random variables as

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 11

X1, . . . , Xm ∼ N(0, 1). Since Xi ∼ N(0, 1), we know that Xi is a sub-gaussian random variable

with squared sub-gaussian norm at most C2 for some absolute constant C [16]. This implies that

X2
i is a sub-exponential random variable with sub-exponential norm

∥∥b2i ∥∥ψ1
= ‖bi‖2ψ2

≤ C2. We

can now apply Bernstein’s inequality to get a tail bound on X:

Pr

[∣∣∣∣ 1

m
X − E[X]

∣∣∣∣ ≥ t] = Pr

[∣∣∣∣∣ 1

m

m∑
i=1

X2
i − 1

∣∣∣∣∣ ≥ t
]

≤ 2 exp

{
−cmin

(
t2

K2
,
t

K

)
m

}

If we pick t =

√
log(m)
m , we have that this bound becomes:

2 exp

{
−c
√
m logm

C2

}
≤ 1

m

This implies that with probability at least 1 − 1
m , 1

mX concentrates close to 1. For m > 100, the

deviation is between [0.75, 1.25] with probability at least 99%. A similar argument for Y gives that

with probability at least 1− 1
d , 1

dY ∈ [0.75, 1.25].

Step 3: Changing product of chi-squared into a sum of chi-squared distributions.

We now focus on the probability Pr[E1|E2], or the probability that Z is far from its expectation

given that both 1
mX and 1

dY are close to their expectations (i.e. in the range [0.75, 1.25]). For

t ∈ [0, 2.5], this probability can written as

Pr

[
1

m
X

1

d
Y − 1 > t

∣∣∣∣E2

]
= Pr

[
1

m
X

1

d
Y > t+ 1

∣∣∣∣E2

]
= Pr

[
log

(
1

m
X

)
+ log

(
1

d
Y

)
> log(t+ 1)

∣∣∣∣E2

]
≤ Pr

[
log

(
1

m
X

)
+ log

(
1

d
Y

)
>
t+ 1

2

∣∣∣∣E2

]

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 12

The last step follows from the assumption that t ∈ [0, 2.5], which allows us to apply the lower

bound log(t + 1) ≥ t+1
2 . Similarly, because we condition on the event E2, we can apply the same

lower bound to replace log
(
1
mX

)
and log

(
1
dY
)

with a linear term, since if the linear lower bound

is greater than t+1
2 , then it is certainly true that the original logarithmic function is also greater

than t+1
2 . Thus, this probability simplifies to:

≤ Pr

[
1

m
X +

1

d
Y− > t+ 1

∣∣∣∣E2

]
≤ 2 exp

{
−cmin

(
t2

K2 ‖a‖22
,

t

K ‖a‖∞

)}

where K = max(maxi
∥∥X2

i

∥∥
ψ1
,maxj

∥∥∥Y 2
j

∥∥∥
ψ1

) for X =
∑m

i=1X
2
i and Y =

∑d
j=1 Y

2
j . The vector a

denotes the vector of size m+ d whose first m values are 1
m and the remaining d values are 1

d (i.e.

the coefficients for the weighted sum of X and Y). We know that
∥∥X2

i

∥∥
ψ1

=
∥∥Y 2

i

∥∥
ψ1
≤ C2 for some

constant C since Xi, Yi ∼ N(0, 1), implying that K = C2. Similarly, we calculate ‖a‖22 = 1
d + 1

m

and ‖a‖∞ = 1
d . Plugging these values back in and noting that m� d, we have the following:

≤ 2 exp

{
−c dt

C2

}

We pick t =

√
log(d)
d . Observe that this is a positive decreasing function in d, whose limit goes to

0, and for d ≥ 1, this satisfies the assumption that t ∈ [0, 2.5]. Plugging in again for t, we have:

≤ 2 exp

{
−c
√
d log d

C2

}
≤ 1

d

The same argument can be applied for the lower tail as well, yielding the same result. From

Equation 3.3 and applying a union bound over X and Y both being far away from 1, we now have

that

Pr[E1] ≤ Pr[E1|E2] + Pr[Ec2]

≤ 1

d
+

1

m
+

1

d

≤ 3

d

Thus, we have shown that with probability at least 1 − 3
d , Z ∈ 1 ±

√
d

log(d) , so Z concentrates

around 1 with small deviations. Recall that ‖∇xfθ(x)‖22 was equal in distribution to dZ, so we

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 13

also have that with high probability, ‖∇xfθ(x)‖22 concentrates around d. We can extend this to a

concentration inequality ‖∇xfθ(x)‖2 as well by noting that for all numbers z ≥ 0, |z−1| ≥ δ implies

that |z2−1| ≥ max(δ, δ2), which we can apply for the above analysis to get the same concentration

for ‖∇xfθ(x)‖2 around
√
d, completing the proof.

Corollary 3.1.2. With high probability, when we perform projected gradient ascent over B(x, ε)

to solve the inner maximization, we will always have a direction of ascent inside the interior of

B(x, ε). Thus, the maxima of the problem will lie on the boundary of the ball with high probability.

3.1.1 Maximizing a Quadratic on the Unit Sphere

Corollary 3.1.2 allows us to restrict our attention to the maximization on the boundary of B(x, ε)

as opposed to the interior of the ball. Equivalently, to calculate the form of the maxima, we can

horizontally translate the ball and rescale to the unit sphere, which means that without loss of

generality, we can focus on an optimization problem over the unit sphere. Further, expanding the

quadratic loss, we have:

`(f(xi, b, A), y) =
1

2
‖f(xi, b, A)− y‖22

=
1

2
(f(xi, b, A)2 + y2 − 2f(x)y)

=
1

2
(xTi A

T bT bAxi − 2AT bT yx+ y2)

This expansion shows us that maximizing the quadratic loss over the unit sphere is equivalent to

the following optimization problem (for the choice of w = bA and v = 2yw):

max
‖x‖22=ε

1

2
xTwwTx− vTx (3.4)

This is equivalent to minimizing the negative of ψ(x) = 1
2x

TwwTx− vTx. We will use the results

of [7] and build upon them for our use. Using Lagrange multipliers (or looking at the Riemannian

gradient on the unit sphere), we can write out the stationary conditions of the problem as:

v − wwTx = λx (3.5)

xTx = ε (3.6)

To simplify notation, let Q = wwT , and suppose we take an eigenvalue decomposition of Q to

be EDET , where D = diag(δ1, . . . , δn) for δ1 ≤ δ2 ≤ · · · ≤ δn, and the columns of E are the

corresponding orthonormal eigenvectors.

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 14

Warm-up: 2-variable case

Suppose w ∈ R2 (and w1, w2 6= 0), so Q ∈ R2×2. Furthermore, suppose v = cw for some constant

c. Then, because Q is by definition rank 1, we have that δ1 = 0. Now, let u = ETx and d = ET v.

Then, Equations 3.5 and 3.6 become

Du = d− λu (3.7)

uTu = ε (3.8)

We wish to first characterize a set of λ values such that Equations 3.7 and 3.8 hold. Suppose first

that λ 6= δ1 and λ 6= δ2. Then, u = (D + λI)−1d because D + λI will be invertible (since it has

non-zero determinant). Then, to satisfy Equation 3.8, we have that

uTu = dT (D − λI)−2d =

(
d1

δ1 + λ

)2

+

(
d2

δ2 + λ

)2

= ε

As in [7], let f(λ) be the explicit secular equation as defined above:

f(λ) =

(
d1

δ1 + λ

)2

+

(
d2

δ2 + λ

)2

− ε = 0 (3.9)

For our warm-up, note that δ1 = 0. Furthermore, we can show that d1 = 0 as shown below.

Lemma 3.1.3. With the assumption that v = cw, we have that d1 = 0, and we have that d2 =
c2δ2h1
v1

= c2δ2h2
v2

, where h is the eigenvector corresponding to δ2.

Proof. Suppose E stores eigenvectors g and h of Q, where g is the eigenvector corresponding to δ1

and h is the eigenvector corresponding to δ2. Then, we have that ETQ = ETwwT can be expanded

as follows:

ETQ =

[
g1 g2

h1 h2

][
w2
1 w1w2

w1w2 w2
2

]

=

[
g1w

2
1 + g2w1w2 g1w1w2 + g2w

2
2

h1w
2
1 + h2w1w2 h1w1w2 + h2w

2
2

]

=

[
δ1g1 δ1g2

δ2h1 δ2h2

]
(Definition of eigenvector)

=

[
0 0

δ2h1 δ2h2

]

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 15

Next, we expand d:

d = cETw = c

[
g1 g2

h1 h2

][
w1

w2

]

= c

[
g1w1 + g2w2

h1w1 + h2w2

]

= c

[
δ1g1/w1

δ2h1/w1

]
(From above)

= c

[
0

cδ2h1/v1

]

=

[
0

c2δ2h2/v2

]

This expansion of d simplifies the secular equation to the following equation (where h is the eigen-

vector of Q corresponding to δ2):

f(λ) =

(
c2δ2h1

v1(δ2 + λ)

)2

− ε = 0 (3.10)

If we obtain solutions λ1 and λ2, we can then solve for the value of x that are stationary points to

the original problem through the equation (for i = 1, 2)

x = E(D + λiI)−1d (3.11)

Lemma 3.1.4. The solutions for λ from the secular equation are

λ = δ2

(
± c

2h1
v1
√
ε
− 1

)
Proof. The proof is simple, since we just solve for λ in Equation 3.10, a quadratic equation. Taking

the square root of both sides, we have that either

c2δ2h1
v1(δ2 + λ)

=
√
ε or

−c2δ2h1
v1(δ2 + λ)

=
√
ε

Solving for λ, we directly obtain that there are two solutions

λ =
c2δ2h1 − v1δ2

√
ε

v1
√
ε

or λ =
−v1δ2

√
ε− c2δ2h1
v1
√
ε

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 16

which is equivalent to λ = δ2

(
± c2h1
v1
√
ε
− 1
)

.

From Lemma 3.1.3 and Lemma 3.1.4, we can now obtain a closed-form for the x that are stationary

points (i.e. maxima since this is a convex quadratic over the unit sphere).

Theorem 3.1.5. The stationary points for optimization problem in Equation 3.4 for w ∈ R2 and

v = cw are

x = ±c2
√
ε

[
h1

h2

]
for i = 1, 2.

Proof. From Equation 3.11, we know that x = E(D + λiI)−1d. From Lemma 3.1.3, we also know

the form of d, which allows us to simplify this calculation. First, for notational purposes, let

D2 = (D + λiI)−1. Since this matrix is diagonal, its inverse is trivial, so we have that

D2 =

[
1/λ 0

0 1/(δ2 + λ)

]
Now expanding the multiplication, we have:

ED2d =

[
g1 h1

g2 h2

][
1/λi 0

0 1/(δ2 + λi)

][
0

c2δ2h1/v1

]

=

[
g1/λi h1/(δ2 + λi)

g2/λi h2/(δ2 + λi)

][
0

c2δ2h1/v1

]

= c2

[
δ2h

2
1/v1(δ2 + λi)

δ2h1h2/v1(δ2 + λi)

]

=
c2

(δ2 + λi)

[
δ2h

2
1/v1

δ2h
2
2/v2

]

= ±c2
√
ε

[
h1

h2

]
(Lemma 3.1.4)

Theorem 3.1.6. The stationary points for optimization problem in Equation 3.4 for w ∈ R2 and

v = w obtain objective function values

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 17

ψ(x) =
1

2
(α1 + α2)

2 ± (cα1 + cα2)

for

αi = c2
√
εhiwi

Proof. We have that ψ(x) = 1
2x

TQx− vTx. From Theorem 3.1.5, we know that the optimal x are

the positive and negative eigenvectors h of Q scaled by c2
√
ε. Plugging this into ψ(x), we have that

ψ(x) =
1

2
c4ε
[
h1 h2

] [w2
1 w1w2

w1w2 w2
2

][
h1

h2

]
− c2
√
ε
[
v1 v2

] [h1
h2

]

=
1

2
c4ε
[
h1w

2
1 + h2w1w2 h1w1w2 + h2w

2
2

] [h1
h2

]
− c2
√
εh1v1 − c2

√
εh2v2

=
1

2
c4ε(h21w

2
1 + h1h2w1w2 + h1h2w1w2 + h22w

2
2)− c2

√
εh1v1 − c2

√
εh2v2

=
1

2
(α1 + α2)

2 − α1 − α2

where αi = c2
√
εhiwi.

Generalizing to more than 2 variables

By the same arguments as above, we can show that for Q = wwT for w ∈ Rd, we still have that only

eigenvector direction matters (corresponding to the non-zero eigenvalue of Q), and this controls

the optimal x as well the maximal loss values on the sphere. To see this, note that the form of d

does not change and is zero in all entries except one again. Thus, the remaining analysis holds.

We summarize these theorems below and note that their proofs are almost identical to the proofs

of their corresponding 2-variable statements in the previous section.

Theorem 3.1.7. The stationary points for optimization problem in Equation 3.4 for w ∈ Rd and

v = cw obtain objective function values

ψ(x) =
1

2

(
d∑
i=1

αi

)2

± c
d∑
i=1

αi

for

αi = c2
√
εhiwi

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 18

With this generalization, we can prove a general statement about projected gradient ascent over

the ball.

Theorem 3.1.8. Suppose we run projected gradient ascent over B(x, ε) to maximize the quadratic

loss. Starting at the center of the ball, x0 = x, we have that projected gradient ascent will converge

to a global maximizer of the problem.

Proof. Without loss of generality, it is enough to prove the statement for the optimization problem

that is over the unit sphere and starts from the all-zeros vector. Note that the smaller value of λ

minimizes the negative objective function (i.e. maximizes the normal objective function). Since

δ2 > 0, the smaller value of λ corresponds to sign that is opposite to the sign of v1. When we run

gradient ascent, this is exactly the direction we move in, and assuming we find a stationary point

using gradient ascent, we would always reach a global maximum.

Introducing Randomness

Our first effort at introducing randomness into the problem will be to suppose that wi ∼ N(0, 1),

so Q is a random matrix. In the context of our 2-layer linear network, this is equivalent to setting

b = (1, . . . , 1) and setting Aij ∼ N(0, 1
m) - such an assumption to keep the last layer fixed is often

made to study the effect of overparametrization [4]. Then, w = bA is a d-dimensional vector such

that wi ∼ N(0, 1).

Lemma 3.1.9 (Upper bound on local to global maxima difference). Under the random choice of w,

with high probability, the difference between objective function values at the local and global maxima

can be at most O(
√
d).

Proof. From Theorem 3.1.7, we have the form of the objective function for the two stationary

points, the local and global maximum. Let f1 denote the objective function value at one maxima

and f2 the objective function value at the other maxima. Considering their difference, we have:

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 19

|f1 − f2| =

∣∣∣∣∣∣
1

2

(
d∑
i=1

αi

)2

+ c

d∑
i=1

αi

−
1

2

(
d∑
i=1

αi

)2

− c
d∑
i=1

αi

∣∣∣∣∣∣
=

∣∣∣∣∣2c
d∑
i=1

αi

∣∣∣∣∣
≤ 2c

d∑
i=1

|αi| (Triangle Inequality)

= 2c ‖α‖1
= 2c3

√
ε ‖〈h,w〉‖1

≤ 2c3
√
ε ‖h‖2 ‖w‖2 (Hölder’s inequality)

Recall that h is a orthonormal eigenvector, so its norm is 1. Since w is a Gaussian random vector, its

expected `2 norm concentrates around
√
d with high probability [16]. We can make this probability

arbitrarily high for any choice of deviation that is a multiple of
√
d. Thus, with high probability,

we have that the difference between objective function values at the two stationary points is at

most O(
√
d).

The above upper bound can also be tight, which shows that the ideal property that all local maxima

are equal in value (or close in value) to the value of the global maxima is not true. However, we

have already shown that we can run projected gradient ascent from the center of the ball and

always reach the global maximizer. In practice, randomly initialized projected gradient ascent is

much more common than fixing an arbitrary starting point, so we would like to prove a statement

about the optimization landscape given this algorithm. We first define some terms that we will

use afterwards. Recall that in the given optimization problem, there are two directions that lead

to stationary points. As Lemma 3.1.9 shows, in general, the objective function values between the

local and global maxima can be high. The observation is that this discrepancy is dictated by the

position of the global minimizer of the problem with respect to the center of the ball B(x, ε). To

see this, note the stationary condition for the minimizer of the quadratic function is:

v − wwTx = 0 (3.12)

For v = cw, we have that wwTx = cw, which implies that all global minima of the problem lie on

the hyperplane wTx = c.

Definition 3.1.1. We denote the hyperplane wTx = c as the separating hyperplane of the opti-

mization problem in Equation 3.4.

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 20

Specifically, note that all points on one side of the hyperplane converge to the same stationary

point. From Theorem 3.1.8, we know that if we initialize projected gradient ascent to any point

on the side of the hyperplane that contains the center of the ball, we will then converge to a global

maximizer of the problem. To prove a stronger statement about the optimization landscape of

Equation 3.4, we make an assumption on the specific data distribution. This is because the data

distribution D determines the center of the ball B(x, ε) for x ∼ D.

Lemma 3.1.10. Suppose our data is drawn from the zero-centered sphere of radius ε+ cmax under

a uniform density, where cmax is the largest label value for any point in the given dataset. Then,

with probability at least 99% over the random choice of data and choice of w, for any point x drawn

under the density, the separating hyperplane (defined by wTx = c) is at least distance O
(

ε√
d

)
from

the center of the ball B(x, ε).

Proof. For a given point v, the distance s from v to the separating hyperplane is:

s =
|wT v − c|
‖w‖2

Note that if our data comes from the sphere of radius ε, the center of the ball B(x, ε) is a point on

this sphere, since we run the inner maximization over a ball from any point in the original dataset.

Consider the random variable g ∼ N(0, Id) and let v = (ε + cmax) g
‖g‖2

. Then, v is uniformly

distributed on the sphere of radius ε + c, so v can be thought of as a datapoint drawn from a

uniform measure over the sphere [16]. We can then calculate E[s] as:

E[s] = E
[
|wT v − c|
‖w‖2

]
= E

[∣∣∣∣wT v − c‖w‖2

∣∣∣∣]
≥ E

[∣∣∣∣∣∣∣∣(ε+ cmax)〈 w

‖w‖2
,
g

‖g‖2
〉
∣∣∣∣− |c|
‖w‖2

∣∣∣∣]
Because g and w are distributed as isotropic Gaussians of dimension d, they are near orthogonal in

high dimensions, so we have that
∥∥∥(ε+ cmax)〈 w

‖w‖2
, g
‖g‖2
〉 −O

(
ε+cmax√

d

)∥∥∥
ψ2

≤ C for some absolute

constant C, where ‖·‖ψ2
denotes the sub-gaussian norm [16]. By the definition of the sub-gaussian

norm, this gives us that with probability at least 99% over the random choice of both w and g,

this term will not deviate by a constant from ε+cmax√
d

. Similarly, we can analyze the second term to

also concentrate around c√
d

with high probability, where this probability is over the choice of w.

Because cmax ≥ c, we conclude with probability at least 99%, if we randomly choose both the data

and the choice of weights w, the distance from the center of the ball (the chosen datapoint) to the

hyperplane (determined by w) is at least O
(

ε√
d

)
.

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 21

Theorem 3.1.11. Suppose our data is drawn from the zero-centered sphere of radius ε + cmax

under a uniform density. Under this measure, then draw a datapoint x and run projected gradient

ascent initialized from a uniformly drawn point in B(x, ε). With probability at least 95% over the

random choice of data, the random initialization of the network, and the chosen initialization point

for projected gradient ascent, this algorithm will converge to a global maximizer.

Proof. We will prove this noting the geometric property that the point that projected gradient

ascent converges to depends on which side of the separating hyperplane the initialization point lies

on. Thus, the proof strategy will be to show that if the separating hyperplane is sufficiently far

from the center of the ball, then most of the volume of the ball is contained on one side of the ball,

specifically the side containing the center of the ball. If we show this, then we will have shown that

with high probability over the choice of random initialization point, running projected gradient

ascent from any point uniformly at random in B(x, ε) will converge to a global maximizer.

First, we show that the separating hyperplane is sufficiently far from the center of the ball. Since

both the center of the ball and the separating hyperplane itself are random variables, from Lemma

3.1.10, under the random choices of these two variables, with probability at least 99%, this distance

is at least O
(

ε√
d

)
. Thus, our problem reduces to analyzing the probability of convergence based on

the random initialization point, which we can analyze using the aforementioned volume argument.

To prove the concentration of volume on one side of the hyperplane, we follow the proof strategy

of the ”blow-up” lemma [16]. Without loss of generality, we prove the claim for the unit sphere

Sd−1, and suppose the distance from the center of the ball to the hyperplane is O
(

1√
d

)
to account

for this. Let H = {x ∈ Sd−1 : x1 ≤ 0} denote one hemisphere of the unit sphere. Denoting σ(·)
as the normalized area on the sphere, we know that σ(H) = 1

2 since it covers half the sphere.

Let Ht = {x ∈ Sd−1 : ∃y ∈ A such that ‖x− y‖2 ≤ t}. Viewing these sets as one side of some

separating hyperplane, we see that H corresponds to a hyperplane that cuts through the origin,

and Ht corresponds to a hyperplane that is translated by distance t. We can view σ(·) as equivalent

to a uniform measure over the sphere, which means that it is equal to the random variable X ∼
Unif(Sd−1) with sub-gaussian norm ‖X‖ψ2

≤ C√
d

for some absolute constant C. Further, we claim

that

{x ∈ Sd−1 : x1 ≤ t/
√

2} ⊂ Ht

To see this, let x ∈ Sd−1 be an element such that x1 ≤ t/
√

2. Then, let y′ be x, except y1 = 0.

Note that y ∈ H. We have that ‖x− y′‖2 = t√
2
< t, which implies that x ∈ Ht. Using this fact

and utilizing the definition of the sub-gaussian tail, we have

CHAPTER 3. THEORETICAL RESULTS: CONVERGENCE FOR LINEAR NETWORKS 22

σ(Ht) = Pr[X ∈ Ht]

≥ Pr[X1 ≤ t/
√

2]

≥ 1− 2 exp
{
−ct2/ ‖X‖2ψ2

}
For our problem, t = O

(
1√
d

)
. Using the absolute constants for the bound, we have that with

probability at least 99%, most of the volume of the ball will be on one side of the hyperplane. Taking

a union bound over the failure probability of Lemma 3.1.10 which depends on the randomness of

w and data x, we have our desired result.

Two-Layer Randomness

Now, if we suppose that b is not fixed to the all-ones vector, we can appeal to Lemma 3.1.1 to prove

similar statements as above. Specifically, we notice that the proofs above simply depend on the

norm of w, which concentrates around
√
d for a Gaussian random vector. Lemma 3.1.1 shows that

bA behaves similarly (but does not concentrate as well), which implies that the above analyses can

be restated for two-layer linear networks as well.

3.2 Extending to Outer Minimization

Theorem 3.1.8 implies that for any setting of weights in the outer minimization, we can always

optimally solve the inner maximization problem by running projected gradient descent initialized

at the center of the ball. This result along with the result from Gao et al. yields our overall state-

ment that adversarial training finds a linear network of low robust loss with respect to an optimal

adversary.

In the previous section, we also argued that randomly initialized projected gradient ascent

will converge to a global maximizer with high probability at random initialization of the neural

network, where our choices of randomness arose from the assumption on data density to be a

uniform measure over a sufficiently large sphere, the random initialization of the network, and

the random initialization of projected gradient ascent. However, we cannot expect this to hold

at all points throughout training. To see this, note that the separating hyperplane represents the

hyperplane for which we correctly classify that datapoint. Thus, as we minimize the overall loss

in the outer minimization, we expect the datapoint to continually get closer to the separating

hyperplane and increasing the probability of reaching a local maximum from randomly initialized

projected gradient ascent. In the following section, we empirically demonstrate this phenomenon.

Chapter 4

Experiments

4.1 Linear Networks

Figure 4.1: At each iteration of adversarial training, we run to convergence 50 iterations of PGA
and report the average distance between the 50 converged iterates. At iteration 20, the outer
minimization loss converges. For this setup, ε = 1, d = 100, and m = 150.

Setup

We sample data from the sphere of dimension 100 and radius 5. This is to ensure that Assump-

tion ?? is met with high enough probability at random initialization, as argued in Lemma 3.1.10.

We run adversarial training for 50 iterations with learning rate set to 0.01, and the model used is

a 2-layer neural network with 150 hidden neurons. The setup is a binary classification task, where

labels are generated uniformly at random from {0, 1} for each datapoint. Note that the assignment

of labels does not influence the result of Lemma 3.1.10, since that already performs the worst-case

23

CHAPTER 4. EXPERIMENTS 24

analysis of when all measure lies on data points with a large label, ensuring that the separating

hyperplane is far from the origin, and could be to close to any point on the ε-sphere.

Discussion

Empirically, we first verify Assumption ?? over the course of adversarial training for linear net-

works. While we showed that at random initialization, with a constant high probability, randomly

initialized projected gradient ascent will converge to a global maximizer, we also demonstrated

an argument for why this should not hold across adversarial training. In Figure 4.1, we see that

for 6 randomly chosen datapoints, at random initialization, we converge to the same iterate (the

global maximum) with high probability, since the average difference between iterates is low. This is

because the separating hyperplane is far enough from the balls that center around each datapoint,

satisfying Assumption ??. However, as training continues, the datapoints move closer to the sepa-

rating hyperplane. This is also intuitive because the separating hyperplane represents minimizing

the loss function (i.e. labelling all points correctly), so over the course of training, the datapoints

will always naturally shift to the separating hyperplane assuming convergence of the outer mini-

mization.

An implication of this is that the convergence of the inner maximization for adversarial training

does not follow arguments such as the Neural Tangent Kernel, for which we can make claims that

analyzing dynamics at random initialization is enough to characterize training dynamics for all of

training. Even if we suppose that the outer minimization problem follows arguments from NTK

theory, small perturbations in weight space can amplify to lead to large output changes.

CHAPTER 4. EXPERIMENTS 25

4.2 Non-Linear Networks

(a) m = 100. Average distance be-
tween converged iterates: 0.99

(b) m = 500. Average distance be-
tween converged iterates: 0.40

(c) m = 1000. Average distance be-
tween converged iterates: 0.39

Figure 4.2: Analysis of Inner Maximization at Random Initialization: We plot a histogram of
loss values, where the x axis represents the loss values obtained over 500 random initializations of
projected gradient ascent, and the y axis represents the histogram counts.

We follow the same problem setup as for the linear networks in the previous section. For non-linear

networks, we observe that even at random initialization, the optimization landscape is difficult

to analyze, and concentration of maxima is not as clear as the linear case. From Figure 4.2,

we demonstrate a similar result to Madry et al., who observe that the distribution of maxima

for the inner maximization concentrates well under random initializations. However, the effect

of overparameterization from the loss landscape is not as clear as analyzing the distribution of

iterates obtained. As we can see in the captions of Figure 4.2, the average distance between

obtained iterates falls as we increase the degree of overparameterization. This suggests that unlike

the linear case, where the landscape depends only on the location of the separating hyperplane, the

optimization landscape depends on the size of the network in the nonlinear case. This is expected

since the optimization problem in the inner maximization is no longer a convex quadratic, since

a non-linearity is applied to the input datapoints. We leave further analyzing the landscape of

this problem to future work, but note that a successful approach to analyzing this problem would

likely move away from landscape analysis, since it seems that there are many local optima for this

problem. We discuss potential approaches to understanding this problem in the following section.

Chapter 5

Conclusion and Future Work

In this thesis, we explored the optimization landscape of the inner maximization problem for

adversarial training. In the case of linear neural networks, our main findings are that projected

gradient ascent initialized at the center of the ball is preferred to randomly initialized projected

gradient ascent. If we initialize at the center of the ball, we reach a global maximizer of the inner

maximization problem with probability 1, which implies that adversarial training finds a network

of low robust loss with respect to any optimal adversary under that perturbation framework. On

the other hand, the performance of randomly initialized projected gradient ascent degrades as we

continue adversarial training.

There are several avenues for future work that would provide more insight into this problem.

First, the analysis for the linear case can likely be extended to handle any convex and Lipschitz

loss function. The observation that the separating hyperplane dictates the difference between the

local and global maxima would hold for any such α-strongly convex loss function for which we can

bound the growth of the function.

A more open direction would be to begin to make insights into the non-linear case. While the

linear case is much easier than the non-linear case since we can find a closed-form solution to the

optimization problem, we hope that the insights from the linear case can help motivate theoretical

analyses for understanding the convergence of projected gradient ascent for the inner maximiza-

tion. Specifically, we conjecture that randomly initialized projected gradient ascent also begins to

degrade as adversarial training continues, which is a phenomenon observed in [17].

It is likely the case that performing a landscape analysis on the inner maximization problem for

non-linear networks is a difficult problem, as landscape analysis for ERM for even three layer non-

26

CHAPTER 5. CONCLUSION AND FUTURE WORK 27

linear neural networks has yielded strong negative results. One technique towards getting around

this analysis could be to do algorithm-based analysis of the convergence of projected gradient

ascent. However, unlike the intuition for the Neural Tangent Kernel arguments, instead of showing

that weights do not need to deviate much from initialization to minimize the loss function, we have

shown that with high probability, we always maximize the loss function on the boundary of the

constraint ball. This implies that understanding the inner maximization problem probably requires

an analysis of optimization beyond the NTK regime, which is an open problem for neural network

learning as a whole.

References

[1] Allen-Zhu, Z., Li, Y., and Liang, Y. Learning and generalization in overparameterized

neural networks, going beyond two layers. In Advances in Neural Information Processing

Systems (2019), pp. 6155–6166.

[2] Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for deep learning via over-

parameterization. arXiv preprint arXiv:1811.03962 (2018).

[3] Carlini, N., and Wagner, D. Towards evaluating the robustness of neural networks. In

2017 IEEE Symposium on Security and Privacy (SP) (2017), IEEE, pp. 39–57.

[4] Du, S. S., and Lee, J. D. On the power of over-parametrization in neural networks with

quadratic activation. arXiv preprint arXiv:1803.01206 (2018).

[5] Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient descent provably optimizes

over-parameterized neural networks. arXiv preprint arXiv:1810.02054 (2018).

[6] Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A. A rotation and a

translation suffice: Fooling cnns with simple transformations. arXiv preprint arXiv:1712.02779

(2017).

[7] Gander, W., Golub, G. H., and von Matt, U. A constrained eigenvalue problem. Linear

Algebra and its applications 114 (1989), 815–839.

[8] Gao, R., Cai, T., Li, H., Wang, L., Hsieh, C.-J., and Lee, J. D. Convergence of

adversarial training in overparametrized networks. arXiv preprint arXiv:1906.07916 (2019).

[9] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition (2016),

pp. 770–778.

28

REFERENCES 29

[10] Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel: Convergence and gen-

eralization in neural networks. In Advances in neural information processing systems (2018),

pp. 8571–8580.

[11] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems (2012),

pp. 1097–1105.

[12] Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Sohl-Dickstein, J., and Penning-

ton, J. Wide neural networks of any depth evolve as linear models under gradient descent.

arXiv preprint arXiv:1902.06720 (2019).

[13] Li, Y., Ma, T., and Zhang, H. Algorithmic regularization in over-parameterized matrix

sensing and neural networks with quadratic activations. arXiv preprint arXiv:1712.09203

(2017).

[14] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep

learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

[15] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,

and Fergus, R. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199

(2013).

[16] Vershynin, R. High-dimensional probability: An introduction with applications in data sci-

ence, vol. 47. Cambridge University Press, 2018.

[17] Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., and Gu, Q. On the convergence and

robustness of adversarial training.

